# Ultralytics YOLO 🚀, AGPL-3.0 license

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Dict, List, Tuple

import torch
from torch import nn
from torch.nn import functional as F

from .decoders import MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder


class Sam(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = 'RGB'

    def __init__(self,
                 image_encoder: ImageEncoderViT,
                 prompt_encoder: PromptEncoder,
                 mask_decoder: MaskDecoder,
                 pixel_mean: List[float] = None,
                 pixel_std: List[float] = None) -> None:
        """
        SAM predicts object masks from an image and input prompts.

        Args:
          image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for
            efficient mask prediction.
          prompt_encoder (PromptEncoder): Encodes various types of input prompts.
          mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
          pixel_std (list(float)): Std values for normalizing pixels in the input image.
        """
        if pixel_mean is None:
            pixel_mean = [123.675, 116.28, 103.53]
        if pixel_std is None:
            pixel_std = [58.395, 57.12, 57.375]
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)

    @property
    def device(self) -> Any:
        return self.pixel_mean.device

    @torch.no_grad()
    def forward(
        self,
        batched_input: List[Dict[str, Any]],
        multimask_output: bool,
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Predicts masks end-to-end from provided images and prompts. If prompts are not known in advance, using
        SamPredictor is recommended over calling the model directly.

        Args:
          batched_input (list(dict)): A list over input images, each a dictionary with the following keys. A prompt
              key can be excluded if it is not present.
              'image': The image as a torch tensor in 3xHxW format, already transformed for input to the model.
              'original_size': (tuple(int, int)) The original size of the image before transformation, as (H, W).
              'point_coords': (torch.Tensor) Batched point prompts for this image, with shape BxNx2. Already
                transformed to the input frame of the model.
              'point_labels': (torch.Tensor) Batched labels for point prompts, with shape BxN.
              'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. Already transformed to the input frame of
                the model.
              'mask_inputs': (torch.Tensor) Batched mask inputs to the model, in the form Bx1xHxW.
          multimask_output (bool): Whether the model should predict multiple disambiguating masks, or return a single
            mask.

        Returns:
          (list(dict)): A list over input images, where each element is as dictionary with the following keys.
              'masks': (torch.Tensor) Batched binary mask predictions, with shape BxCxHxW, where B is the number of
                input prompts, C is determined by multimask_output, and (H, W) is the original size of the image.
              'iou_predictions': (torch.Tensor) The model's predictions of mask quality, in shape BxC.
              'low_res_logits': (torch.Tensor) Low resolution logits with shape BxCxHxW, where H=W=256. Can be passed
                as mask input to subsequent iterations of prediction.
        """
        input_images = torch.stack([self.preprocess(x['image']) for x in batched_input], dim=0)
        image_embeddings = self.image_encoder(input_images)

        outputs = []
        for image_record, curr_embedding in zip(batched_input, image_embeddings):
            if 'point_coords' in image_record:
                points = (image_record['point_coords'], image_record['point_labels'])
            else:
                points = None
            sparse_embeddings, dense_embeddings = self.prompt_encoder(
                points=points,
                boxes=image_record.get('boxes', None),
                masks=image_record.get('mask_inputs', None),
            )
            low_res_masks, iou_predictions = self.mask_decoder(
                image_embeddings=curr_embedding.unsqueeze(0),
                image_pe=self.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings,
                dense_prompt_embeddings=dense_embeddings,
                multimask_output=multimask_output,
            )
            masks = self.postprocess_masks(
                low_res_masks,
                input_size=image_record['image'].shape[-2:],
                original_size=image_record['original_size'],
            )
            masks = masks > self.mask_threshold
            outputs.append({
                'masks': masks,
                'iou_predictions': iou_predictions,
                'low_res_logits': low_res_masks, })
        return outputs

    def postprocess_masks(
        self,
        masks: torch.Tensor,
        input_size: Tuple[int, ...],
        original_size: Tuple[int, ...],
    ) -> torch.Tensor:
        """
        Remove padding and upscale masks to the original image size.

        Args:
          masks (torch.Tensor): Batched masks from the mask_decoder, in BxCxHxW format.
          input_size (tuple(int, int)): The size of the model input image, in (H, W) format. Used to remove padding.
          original_size (tuple(int, int)): The original image size before resizing for input to the model, in (H, W).

        Returns:
          (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) is given by original_size.
        """
        masks = F.interpolate(
            masks,
            (self.image_encoder.img_size, self.image_encoder.img_size),
            mode='bilinear',
            align_corners=False,
        )
        masks = masks[..., :input_size[0], :input_size[1]]
        return F.interpolate(masks, original_size, mode='bilinear', align_corners=False)

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.image_encoder.img_size - h
        padw = self.image_encoder.img_size - w
        return F.pad(x, (0, padw, 0, padh))