// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Preconditioners for linear systems that arise in Structure from // Motion problems. VisibilityBasedPreconditioner implements: // // CLUSTER_JACOBI // CLUSTER_TRIDIAGONAL // // Detailed descriptions of these preconditions beyond what is // documented here can be found in // // Visibility Based Preconditioning for Bundle Adjustment // A. Kushal & S. Agarwal, CVPR 2012. // // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf // // The two preconditioners share enough code that its most efficient // to implement them as part of the same code base. #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ #include #include #include #include #include #include #include "ceres/block_structure.h" #include "ceres/graph.h" #include "ceres/linear_solver.h" #include "ceres/pair_hash.h" #include "ceres/preconditioner.h" #include "ceres/sparse_cholesky.h" namespace ceres::internal { class BlockRandomAccessSparseMatrix; class BlockSparseMatrix; struct CompressedRowBlockStructure; class SchurEliminatorBase; // This class implements visibility based preconditioners for // Structure from Motion/Bundle Adjustment problems. The name // VisibilityBasedPreconditioner comes from the fact that the sparsity // structure of the preconditioner matrix is determined by analyzing // the visibility structure of the scene, i.e. which cameras see which // points. // // The key idea of visibility based preconditioning is to identify // cameras that we expect have strong interactions, and then using the // entries in the Schur complement matrix corresponding to these // camera pairs as an approximation to the full Schur complement. // // CLUSTER_JACOBI identifies these camera pairs by clustering cameras, // and considering all non-zero camera pairs within each cluster. The // clustering in the current implementation is done using the // Canonical Views algorithm of Simon et al. (see // canonical_views_clustering.h). For the purposes of clustering, the // similarity or the degree of interaction between a pair of cameras // is measured by counting the number of points visible in both the // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we // were to permute the parameter blocks such that all the cameras in // the same cluster occur contiguously, the preconditioner matrix will // be a block diagonal matrix with blocks corresponding to the // clusters. Thus in analogy with the Jacobi preconditioner we refer // to this as the CLUSTER_JACOBI preconditioner. // // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI // preconditioner by considering the interaction between clusters and // identifying strong interactions between cluster pairs. This is done // by constructing a weighted graph on the clusters, with the weight // on the edges connecting two clusters proportional to the number of // 3D points visible to cameras in both the clusters. A degree-2 // maximum spanning forest is identified in this graph and the camera // pairs contained in the edges of this forest are added to the // preconditioner. The detailed reasoning for this construction is // explained in the paper mentioned above. // // Degree-2 spanning trees and forests have the property that they // correspond to tri-diagonal matrices. Thus there exist a permutation // of the camera blocks under which the CLUSTER_TRIDIAGONAL // preconditioner matrix is a block tridiagonal matrix, and thus the // name for the preconditioner. // // Thread Safety: This class is NOT thread safe. // // Example usage: // // LinearSolver::Options options; // options.preconditioner_type = CLUSTER_JACOBI; // options.elimination_groups.push_back(num_points); // options.elimination_groups.push_back(num_cameras); // VisibilityBasedPreconditioner preconditioner( // *A.block_structure(), options); // preconditioner.Update(A, nullptr); // preconditioner.RightMultiplyAndAccumulate(x, y); class CERES_NO_EXPORT VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner { public: // Initialize the symbolic structure of the preconditioner. bs is // the block structure of the linear system to be solved. It is used // to determine the sparsity structure of the preconditioner matrix. // // It has the same structural requirement as other Schur complement // based solvers. Please see schur_eliminator.h for more details. VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, Preconditioner::Options options); VisibilityBasedPreconditioner(const VisibilityBasedPreconditioner&) = delete; void operator=(const VisibilityBasedPreconditioner&) = delete; ~VisibilityBasedPreconditioner() override; // Preconditioner interface void RightMultiplyAndAccumulate(const double* x, double* y) const final; int num_rows() const final; friend class VisibilityBasedPreconditionerTest; private: bool UpdateImpl(const BlockSparseMatrix& A, const double* D) final; void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs); void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs); void InitStorage(const CompressedRowBlockStructure& bs); void InitEliminator(const CompressedRowBlockStructure& bs); LinearSolverTerminationType Factorize(); void ScaleOffDiagonalCells(); void ClusterCameras(const std::vector>& visibility); void FlattenMembershipMap(const std::unordered_map& membership_map, std::vector* membership_vector) const; void ComputeClusterVisibility( const std::vector>& visibility, std::vector>* cluster_visibility) const; std::unique_ptr> CreateClusterGraph( const std::vector>& visibility) const; void ForestToClusterPairs( const WeightedGraph& forest, std::unordered_set, pair_hash>* cluster_pairs) const; void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs); bool IsBlockPairInPreconditioner(int block1, int block2) const; bool IsBlockPairOffDiagonal(int block1, int block2) const; Preconditioner::Options options_; // Number of parameter blocks in the schur complement. int num_blocks_; int num_clusters_; // Sizes of the blocks in the schur complement. std::vector blocks_; // Mapping from cameras to clusters. std::vector cluster_membership_; // Non-zero camera pairs from the schur complement matrix that are // present in the preconditioner, sorted by row (first element of // each pair), then column (second). std::set> block_pairs_; // Set of cluster pairs (including self pairs (i,i)) in the // preconditioner. std::unordered_set, pair_hash> cluster_pairs_; std::unique_ptr eliminator_; // Preconditioner matrix. std::unique_ptr m_; std::unique_ptr m_crs_; std::unique_ptr sparse_cholesky_; }; } // namespace ceres::internal #endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_