// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // sameeragarwal@google.com (Sameer Agarwal) // // This tests the TrustRegionMinimizer loop using a direct Evaluator // implementation, rather than having a test that goes through all the // Program and Problem machinery. #include "ceres/trust_region_minimizer.h" #include #include #include "ceres/autodiff_cost_function.h" #include "ceres/cost_function.h" #include "ceres/dense_qr_solver.h" #include "ceres/dense_sparse_matrix.h" #include "ceres/evaluator.h" #include "ceres/internal/export.h" #include "ceres/linear_solver.h" #include "ceres/minimizer.h" #include "ceres/problem.h" #include "ceres/trust_region_strategy.h" #include "gtest/gtest.h" namespace ceres::internal { // Templated Evaluator for Powell's function. The template parameters // indicate which of the four variables/columns of the jacobian are // active. This is equivalent to constructing a problem and using the // SubsetManifold. This allows us to test the support for // the Evaluator::Plus operation besides checking for the basic // performance of the trust region algorithm. template class PowellEvaluator2 : public Evaluator { public: // clang-format off PowellEvaluator2() : num_active_cols_( (col1 ? 1 : 0) + (col2 ? 1 : 0) + (col3 ? 1 : 0) + (col4 ? 1 : 0)) { VLOG(1) << "Columns: " << col1 << " " << col2 << " " << col3 << " " << col4; } // clang-format on // Implementation of Evaluator interface. std::unique_ptr CreateJacobian() const final { CHECK(col1 || col2 || col3 || col4); auto dense_jacobian = std::make_unique( NumResiduals(), NumEffectiveParameters()); dense_jacobian->SetZero(); return dense_jacobian; } bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options, const double* state, double* cost, double* residuals, double* gradient, SparseMatrix* jacobian) final { const double x1 = state[0]; const double x2 = state[1]; const double x3 = state[2]; const double x4 = state[3]; VLOG(1) << "State: " << "x1=" << x1 << ", " << "x2=" << x2 << ", " << "x3=" << x3 << ", " << "x4=" << x4 << "."; const double f1 = x1 + 10.0 * x2; const double f2 = sqrt(5.0) * (x3 - x4); const double f3 = pow(x2 - 2.0 * x3, 2.0); const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0); VLOG(1) << "Function: " << "f1=" << f1 << ", " << "f2=" << f2 << ", " << "f3=" << f3 << ", " << "f4=" << f4 << "."; *cost = (f1 * f1 + f2 * f2 + f3 * f3 + f4 * f4) / 2.0; VLOG(1) << "Cost: " << *cost; if (residuals != nullptr) { residuals[0] = f1; residuals[1] = f2; residuals[2] = f3; residuals[3] = f4; } if (jacobian != nullptr) { DenseSparseMatrix* dense_jacobian; dense_jacobian = down_cast(jacobian); dense_jacobian->SetZero(); Matrix& jacobian_matrix = *(dense_jacobian->mutable_matrix()); CHECK_EQ(jacobian_matrix.cols(), num_active_cols_); int column_index = 0; if (col1) { // clang-format off jacobian_matrix.col(column_index++) << 1.0, 0.0, 0.0, sqrt(10.0) * 2.0 * (x1 - x4); // clang-format on } if (col2) { // clang-format off jacobian_matrix.col(column_index++) << 10.0, 0.0, 2.0*(x2 - 2.0*x3), 0.0; // clang-format on } if (col3) { // clang-format off jacobian_matrix.col(column_index++) << 0.0, sqrt(5.0), 4.0*(2.0*x3 - x2), 0.0; // clang-format on } if (col4) { // clang-format off jacobian_matrix.col(column_index++) << 0.0, -sqrt(5.0), 0.0, sqrt(10.0) * 2.0 * (x4 - x1); // clang-format on } VLOG(1) << "\n" << jacobian_matrix; } if (gradient != nullptr) { int column_index = 0; if (col1) { gradient[column_index++] = f1 + f4 * sqrt(10.0) * 2.0 * (x1 - x4); } if (col2) { gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3); } if (col3) { gradient[column_index++] = f2 * sqrt(5.0) + f3 * (4.0 * (2.0 * x3 - x2)); } if (col4) { gradient[column_index++] = -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1); } } return true; } bool Plus(const double* state, const double* delta, double* state_plus_delta) const final { int delta_index = 0; state_plus_delta[0] = (col1 ? state[0] + delta[delta_index++] : state[0]); state_plus_delta[1] = (col2 ? state[1] + delta[delta_index++] : state[1]); state_plus_delta[2] = (col3 ? state[2] + delta[delta_index++] : state[2]); state_plus_delta[3] = (col4 ? state[3] + delta[delta_index++] : state[3]); return true; } int NumEffectiveParameters() const final { return num_active_cols_; } int NumParameters() const final { return 4; } int NumResiduals() const final { return 4; } private: const int num_active_cols_; }; // Templated function to hold a subset of the columns fixed and check // if the solver converges to the optimal values or not. template void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) { Solver::Options solver_options; LinearSolver::Options linear_solver_options; DenseQRSolver linear_solver(linear_solver_options); double parameters[4] = {3, -1, 0, 1.0}; // If the column is inactive, then set its value to the optimal // value. parameters[0] = (col1 ? parameters[0] : 0.0); parameters[1] = (col2 ? parameters[1] : 0.0); parameters[2] = (col3 ? parameters[2] : 0.0); parameters[3] = (col4 ? parameters[3] : 0.0); Minimizer::Options minimizer_options(solver_options); minimizer_options.gradient_tolerance = 1e-26; minimizer_options.function_tolerance = 1e-26; minimizer_options.parameter_tolerance = 1e-26; minimizer_options.evaluator = std::make_unique>(); minimizer_options.jacobian = minimizer_options.evaluator->CreateJacobian(); TrustRegionStrategy::Options trust_region_strategy_options; trust_region_strategy_options.trust_region_strategy_type = strategy_type; trust_region_strategy_options.linear_solver = &linear_solver; trust_region_strategy_options.initial_radius = 1e4; trust_region_strategy_options.max_radius = 1e20; trust_region_strategy_options.min_lm_diagonal = 1e-6; trust_region_strategy_options.max_lm_diagonal = 1e32; minimizer_options.trust_region_strategy = TrustRegionStrategy::Create(trust_region_strategy_options); TrustRegionMinimizer minimizer; Solver::Summary summary; minimizer.Minimize(minimizer_options, parameters, &summary); // The minimum is at x1 = x2 = x3 = x4 = 0. EXPECT_NEAR(0.0, parameters[0], 0.001); EXPECT_NEAR(0.0, parameters[1], 0.001); EXPECT_NEAR(0.0, parameters[2], 0.001); EXPECT_NEAR(0.0, parameters[3], 0.001); } TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) { // This case is excluded because this has a local minimum and does // not find the optimum. This should not affect the correctness of // this test since we are testing all the other 14 combinations of // column activations. // // IsSolveSuccessful(); const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT; // clang-format off IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); // clang-format on } TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) { // The following two cases are excluded because they encounter a // local minimum. // // IsTrustRegionSolveSuccessful(kStrategy); // IsTrustRegionSolveSuccessful(kStrategy); const TrustRegionStrategyType kStrategy = DOGLEG; // clang-format off IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); IsTrustRegionSolveSuccessful(kStrategy); // clang-format on } class CurveCostFunction : public CostFunction { public: CurveCostFunction(int num_vertices, double target_length) : num_vertices_(num_vertices), target_length_(target_length) { set_num_residuals(1); for (int i = 0; i < num_vertices_; ++i) { mutable_parameter_block_sizes()->push_back(2); } } bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const override { residuals[0] = target_length_; for (int i = 0; i < num_vertices_; ++i) { int prev = (num_vertices_ + i - 1) % num_vertices_; double length = 0.0; for (int dim = 0; dim < 2; dim++) { const double diff = parameters[prev][dim] - parameters[i][dim]; length += diff * diff; } residuals[0] -= sqrt(length); } if (jacobians == nullptr) { return true; } for (int i = 0; i < num_vertices_; ++i) { if (jacobians[i] != nullptr) { int prev = (num_vertices_ + i - 1) % num_vertices_; int next = (i + 1) % num_vertices_; double u[2], v[2]; double norm_u = 0., norm_v = 0.; for (int dim = 0; dim < 2; dim++) { u[dim] = parameters[i][dim] - parameters[prev][dim]; norm_u += u[dim] * u[dim]; v[dim] = parameters[next][dim] - parameters[i][dim]; norm_v += v[dim] * v[dim]; } norm_u = sqrt(norm_u); norm_v = sqrt(norm_v); for (int dim = 0; dim < 2; dim++) { jacobians[i][dim] = 0.; if (norm_u > std::numeric_limits::min()) { jacobians[i][dim] -= u[dim] / norm_u; } if (norm_v > std::numeric_limits::min()) { jacobians[i][dim] += v[dim] / norm_v; } } } } return true; } private: int num_vertices_; double target_length_; }; TEST(TrustRegionMinimizer, JacobiScalingTest) { int N = 6; std::vector y(N); const double pi = 3.1415926535897932384626433; for (int i = 0; i < N; i++) { double theta = i * 2. * pi / static_cast(N); y[i] = new double[2]; y[i][0] = cos(theta); y[i][1] = sin(theta); } Problem problem; problem.AddResidualBlock(new CurveCostFunction(N, 10.), nullptr, y); Solver::Options options; options.linear_solver_type = ceres::DENSE_QR; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_LE(summary.final_cost, 1e-10); for (int i = 0; i < N; i++) { delete[] y[i]; } } struct ExpCostFunctor { template bool operator()(const T* const x, T* residual) const { residual[0] = T(10.0) - exp(x[0]); return true; } static CostFunction* Create() { return new AutoDiffCostFunction(new ExpCostFunctor); } }; TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) { double x = 5; Problem problem; problem.AddResidualBlock(ExpCostFunctor::Create(), nullptr, &x); problem.SetParameterLowerBound(&x, 0, 3.0); Solver::Options options; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_NEAR(3.0, x, 1e-12); const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2); EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12); } } // namespace ceres::internal