// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/solver.h" #include #include #include #include #include #include "ceres/autodiff_cost_function.h" #include "ceres/evaluation_callback.h" #include "ceres/manifold.h" #include "ceres/problem.h" #include "ceres/problem_impl.h" #include "ceres/sized_cost_function.h" #include "gtest/gtest.h" namespace ceres::internal { TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) { Solver::Options options; options.minimizer_type = TRUST_REGION; std::string error; EXPECT_TRUE(options.IsValid(&error)) << error; } TEST(SolverOptions, DefaultLineSearchOptionsAreValid) { Solver::Options options; options.minimizer_type = LINE_SEARCH; std::string error; EXPECT_TRUE(options.IsValid(&error)) << error; } struct QuadraticCostFunctor { template bool operator()(const T* const x, T* residual) const { residual[0] = T(5.0) - *x; return true; } static CostFunction* Create() { return new AutoDiffCostFunction( new QuadraticCostFunctor); } }; struct RememberingCallback : public IterationCallback { explicit RememberingCallback(double* x) : calls(0), x(x) {} CallbackReturnType operator()(const IterationSummary& summary) final { x_values.push_back(*x); return SOLVER_CONTINUE; } int calls; double* x; std::vector x_values; }; struct NoOpEvaluationCallback : EvaluationCallback { void PrepareForEvaluation(bool evaluate_jacobians, bool new_evaluation_point) final { (void)evaluate_jacobians; (void)new_evaluation_point; } }; TEST(Solver, UpdateStateEveryIterationOptionNoEvaluationCallback) { double x = 50.0; const double original_x = x; Problem::Options problem_options; Problem problem(problem_options); problem.AddResidualBlock(QuadraticCostFunctor::Create(), nullptr, &x); Solver::Options options; options.linear_solver_type = DENSE_QR; RememberingCallback callback(&x); options.callbacks.push_back(&callback); Solver::Summary summary; int num_iterations; // First: update_state_every_iteration=false, evaluation_callback=nullptr. Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); for (double value : callback.x_values) { EXPECT_EQ(50.0, value); } // Second: update_state_every_iteration=true, evaluation_callback=nullptr. x = 50.0; options.update_state_every_iteration = true; callback.x_values.clear(); Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); EXPECT_EQ(original_x, callback.x_values[0]); EXPECT_NE(original_x, callback.x_values[1]); } TEST(Solver, UpdateStateEveryIterationOptionWithEvaluationCallback) { double x = 50.0; const double original_x = x; Problem::Options problem_options; NoOpEvaluationCallback evaluation_callback; problem_options.evaluation_callback = &evaluation_callback; Problem problem(problem_options); problem.AddResidualBlock(QuadraticCostFunctor::Create(), nullptr, &x); Solver::Options options; options.linear_solver_type = DENSE_QR; RememberingCallback callback(&x); options.callbacks.push_back(&callback); Solver::Summary summary; int num_iterations; // First: update_state_every_iteration=true, evaluation_callback=!nullptr. x = 50.0; options.update_state_every_iteration = true; callback.x_values.clear(); Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); EXPECT_EQ(original_x, callback.x_values[0]); EXPECT_NE(original_x, callback.x_values[1]); // Second: update_state_every_iteration=false, evaluation_callback=!nullptr. x = 50.0; options.update_state_every_iteration = false; callback.x_values.clear(); Solve(options, &problem, &summary); num_iterations = summary.num_successful_steps + summary.num_unsuccessful_steps; EXPECT_GT(num_iterations, 1); EXPECT_EQ(original_x, callback.x_values[0]); EXPECT_NE(original_x, callback.x_values[1]); } TEST(Solver, CantMixEvaluationCallbackWithInnerIterations) { double x = 50.0; double y = 60.0; Problem::Options problem_options; NoOpEvaluationCallback evaluation_callback; problem_options.evaluation_callback = &evaluation_callback; Problem problem(problem_options); problem.AddResidualBlock(QuadraticCostFunctor::Create(), nullptr, &x); problem.AddResidualBlock(QuadraticCostFunctor::Create(), nullptr, &y); Solver::Options options; options.use_inner_iterations = true; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, FAILURE); options.use_inner_iterations = false; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); } // The parameters must be in separate blocks so that they can be individually // set constant or not. struct Quadratic4DCostFunction { template bool operator()(const T* const x, const T* const y, const T* const z, const T* const w, T* residual) const { // A 4-dimension axis-aligned quadratic. residual[0] = T(10.0) - *x + T(20.0) - *y + T(30.0) - *z + T(40.0) - *w; return true; } static CostFunction* Create() { return new AutoDiffCostFunction( new Quadratic4DCostFunction); } }; // A cost function that simply returns its argument. class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { public: bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const final { residuals[0] = parameters[0][0]; if (jacobians != nullptr && jacobians[0] != nullptr) { jacobians[0][0] = 1.0; } return true; } }; TEST(Solver, TrustRegionProblemHasNoParameterBlocks) { Problem problem; Solver::Options options; options.minimizer_type = TRUST_REGION; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.message, "Function tolerance reached. " "No non-constant parameter blocks found."); } TEST(Solver, LineSearchProblemHasNoParameterBlocks) { Problem problem; Solver::Options options; options.minimizer_type = LINE_SEARCH; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.message, "Function tolerance reached. " "No non-constant parameter blocks found."); } TEST(Solver, TrustRegionProblemHasZeroResiduals) { Problem problem; double x = 1; problem.AddParameterBlock(&x, 1); Solver::Options options; options.minimizer_type = TRUST_REGION; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.message, "Function tolerance reached. " "No non-constant parameter blocks found."); } TEST(Solver, LineSearchProblemHasZeroResiduals) { Problem problem; double x = 1; problem.AddParameterBlock(&x, 1); Solver::Options options; options.minimizer_type = LINE_SEARCH; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.message, "Function tolerance reached. " "No non-constant parameter blocks found."); } TEST(Solver, TrustRegionProblemIsConstant) { Problem problem; double x = 1; problem.AddResidualBlock(new UnaryIdentityCostFunction, nullptr, &x); problem.SetParameterBlockConstant(&x); Solver::Options options; options.minimizer_type = TRUST_REGION; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); EXPECT_EQ(summary.final_cost, 1.0 / 2.0); } TEST(Solver, LineSearchProblemIsConstant) { Problem problem; double x = 1; problem.AddResidualBlock(new UnaryIdentityCostFunction, nullptr, &x); problem.SetParameterBlockConstant(&x); Solver::Options options; options.minimizer_type = LINE_SEARCH; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); EXPECT_EQ(summary.final_cost, 1.0 / 2.0); } template class DummyCostFunction : public SizedCostFunction { public: bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const override { for (int i = 0; i < kNumResiduals; ++i) { residuals[i] = kNumResiduals * kNumResiduals + i; } return true; } }; TEST(Solver, FixedCostForConstantProblem) { double x = 1.0; Problem problem; problem.AddResidualBlock(new DummyCostFunction<2, 1>(), nullptr, &x); problem.SetParameterBlockConstant(&x); const double expected_cost = 41.0 / 2.0; // 1/2 * ((4 + 0)^2 + (4 + 1)^2) Solver::Options options; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_TRUE(summary.IsSolutionUsable()); EXPECT_EQ(summary.fixed_cost, expected_cost); EXPECT_EQ(summary.initial_cost, expected_cost); EXPECT_EQ(summary.final_cost, expected_cost); EXPECT_EQ(summary.iterations.size(), 0); } struct LinearCostFunction { template bool operator()(const T* x, const T* y, T* residual) const { residual[0] = T(10.0) - *x; residual[1] = T(5.0) - *y; return true; } static CostFunction* Create() { return new AutoDiffCostFunction( new LinearCostFunction); } }; TEST(Solver, ZeroSizedManifoldHoldsParameterBlockConstant) { double x = 0.0; double y = 1.0; Problem problem; problem.AddResidualBlock(LinearCostFunction::Create(), nullptr, &x, &y); problem.SetManifold(&y, new SubsetManifold(1, {0})); EXPECT_TRUE(problem.IsParameterBlockConstant(&y)); Solver::Options options; options.function_tolerance = 0.0; options.gradient_tolerance = 0.0; options.parameter_tolerance = 0.0; Solver::Summary summary; Solve(options, &problem, &summary); EXPECT_EQ(summary.termination_type, CONVERGENCE); EXPECT_NEAR(x, 10.0, 1e-7); EXPECT_EQ(y, 1.0); } TEST(Solver, DenseNormalCholeskyOptions) { std::string message; Solver::Options options; options.linear_solver_type = DENSE_NORMAL_CHOLESKY; EXPECT_TRUE(options.IsValid(&message)); options.dense_linear_algebra_library_type = EIGEN; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; EXPECT_TRUE(options.IsValid(&message)); if (IsDenseLinearAlgebraLibraryTypeAvailable(LAPACK)) { options.use_mixed_precision_solves = false; options.dense_linear_algebra_library_type = LAPACK; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; EXPECT_TRUE(options.IsValid(&message)); } else { options.use_mixed_precision_solves = false; options.dense_linear_algebra_library_type = LAPACK; EXPECT_FALSE(options.IsValid(&message)); } } TEST(Solver, DenseQrOptions) { std::string message; Solver::Options options; options.linear_solver_type = DENSE_QR; options.use_mixed_precision_solves = false; options.dense_linear_algebra_library_type = EIGEN; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); if (IsDenseLinearAlgebraLibraryTypeAvailable(LAPACK)) { options.use_mixed_precision_solves = false; options.dense_linear_algebra_library_type = LAPACK; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } else { options.use_mixed_precision_solves = false; options.dense_linear_algebra_library_type = LAPACK; EXPECT_FALSE(options.IsValid(&message)); } } TEST(Solver, SparseNormalCholeskyOptionsNoSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library_type = NO_SPARSE; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, SparseNormalCholeskyOptionsEigenSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); } #ifndef CERES_NO_EIGEN_METIS options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); } #else options.linear_solver_ordering_type = NESDIS; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); #endif } TEST(Solver, SparseNormalCholeskyOptionsSuiteSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #ifndef CERES_NO_CHOLMOD_PARTITION options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #else options.linear_solver_ordering_type = NESDIS; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); #endif } TEST(Solver, SparseNormalCholeskyOptionsAccelerateSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } } TEST(Solver, DenseSchurOptions) { std::string message; Solver::Options options; options.linear_solver_type = DENSE_SCHUR; options.dense_linear_algebra_library_type = EIGEN; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.dense_linear_algebra_library_type = LAPACK; if (IsDenseLinearAlgebraLibraryTypeAvailable( options.dense_linear_algebra_library_type)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } } TEST(Solver, SparseSchurOptionsNoSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_SCHUR; options.sparse_linear_algebra_library_type = NO_SPARSE; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, SparseSchurOptionsEigenSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_SCHUR; options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #ifndef CERES_NO_EIGEN_METIS options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable(EIGEN_SPARSE)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #else options.linear_solver_ordering_type = NESDIS; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); #endif } TEST(Solver, SparseSchurOptionsSuiteSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_SCHUR; options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #ifndef CERES_NO_CHOLMOD_PARTITION options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } #else options.linear_solver_ordering_type = NESDIS; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_FALSE(options.IsValid(&message)); #endif } TEST(Solver, SparseSchurOptionsAccelerateSparse) { std::string message; Solver::Options options; options.linear_solver_type = SPARSE_SCHUR; options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.linear_solver_ordering_type = AMD; options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { EXPECT_TRUE(options.IsValid(&message)); } else { EXPECT_FALSE(options.IsValid(&message)); } if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } options.linear_solver_ordering_type = NESDIS; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.use_mixed_precision_solves = false; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = false; EXPECT_TRUE(options.IsValid(&message)); options.use_mixed_precision_solves = false; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); options.use_mixed_precision_solves = true; options.dynamic_sparsity = true; EXPECT_FALSE(options.IsValid(&message)); } } TEST(Solver, CgnrOptionsIdentityPreconditioner) { std::string message; Solver::Options options; options.linear_solver_type = CGNR; options.preconditioner_type = IDENTITY; options.sparse_linear_algebra_library_type = NO_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = CUDA_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable(CUDA_SPARSE)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, CgnrOptionsJacobiPreconditioner) { std::string message; Solver::Options options; options.linear_solver_type = CGNR; options.preconditioner_type = JACOBI; options.sparse_linear_algebra_library_type = NO_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = CUDA_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable(CUDA_SPARSE)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, CgnrOptionsSubsetPreconditioner) { std::string message; Solver::Options options; options.linear_solver_type = CGNR; options.preconditioner_type = SUBSET; options.sparse_linear_algebra_library_type = NO_SPARSE; EXPECT_FALSE(options.IsValid(&message)); options.residual_blocks_for_subset_preconditioner.insert(nullptr); EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); options.sparse_linear_algebra_library_type = EIGEN_SPARSE; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } options.sparse_linear_algebra_library_type = SUITE_SPARSE; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; if (IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)) { options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_TRUE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } options.sparse_linear_algebra_library_type = CUDA_SPARSE; options.dynamic_sparsity = false; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = true; options.use_mixed_precision_solves = false; EXPECT_FALSE(options.IsValid(&message)); options.dynamic_sparsity = false; options.use_mixed_precision_solves = true; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, CgnrOptionsSchurPreconditioners) { std::string message; Solver::Options options; options.linear_solver_type = CGNR; options.preconditioner_type = SCHUR_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, IterativeSchurOptionsNoSparse) { std::string message; Solver::Options options; options.linear_solver_type = ITERATIVE_SCHUR; options.sparse_linear_algebra_library_type = NO_SPARSE; options.preconditioner_type = IDENTITY; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = SUBSET; EXPECT_FALSE(options.IsValid(&message)); options.use_explicit_schur_complement = true; options.preconditioner_type = IDENTITY; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, IterativeSchurOptionsEigenSparse) { std::string message; Solver::Options options; options.linear_solver_type = ITERATIVE_SCHUR; options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.preconditioner_type = IDENTITY; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = SUBSET; EXPECT_FALSE(options.IsValid(&message)); options.use_explicit_schur_complement = true; options.preconditioner_type = IDENTITY; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, IterativeSchurOptionsSuiteSparse) { std::string message; Solver::Options options; options.linear_solver_type = ITERATIVE_SCHUR; options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.preconditioner_type = IDENTITY; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = SUBSET; EXPECT_FALSE(options.IsValid(&message)); options.use_explicit_schur_complement = true; options.preconditioner_type = IDENTITY; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); } TEST(Solver, IterativeSchurOptionsAccelerateSparse) { std::string message; Solver::Options options; options.linear_solver_type = ITERATIVE_SCHUR; options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.preconditioner_type = IDENTITY; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_EQ(options.IsValid(&message), IsSparseLinearAlgebraLibraryTypeAvailable( options.sparse_linear_algebra_library_type)); options.preconditioner_type = SUBSET; EXPECT_FALSE(options.IsValid(&message)); options.use_explicit_schur_complement = true; options.preconditioner_type = IDENTITY; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = SCHUR_JACOBI; EXPECT_TRUE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_JACOBI; EXPECT_FALSE(options.IsValid(&message)); options.preconditioner_type = CLUSTER_TRIDIAGONAL; EXPECT_FALSE(options.IsValid(&message)); } class LargeCostCostFunction : public SizedCostFunction<1, 1> { public: bool Evaluate(double const* const* parameters, double* residuals, double** jacobians) const override { residuals[0] = 1e300; if (jacobians && jacobians[0]) { jacobians[0][0] = 1.0; } return true; } }; TEST(Solver, LargeCostProblem) { double x = 1; Problem problem; problem.AddResidualBlock(new LargeCostCostFunction, nullptr, &x); Solver::Options options; Solver::Summary summary; Solve(options, &problem, &summary); LOG(INFO) << summary.FullReport(); EXPECT_EQ(summary.termination_type, FAILURE); } } // namespace ceres::internal