// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Authors: sameeragarwal@google.com (Sameer Agarwal) #include #include #include #include #include "Eigen/Dense" #include "benchmark/benchmark.h" #include "ceres/block_random_access_dense_matrix.h" #include "ceres/block_sparse_matrix.h" #include "ceres/block_structure.h" #include "ceres/schur_eliminator.h" namespace ceres::internal { constexpr int kRowBlockSize = 2; constexpr int kEBlockSize = 3; constexpr int kFBlockSize = 6; class BenchmarkData { public: explicit BenchmarkData(const int num_e_blocks) { auto* bs = new CompressedRowBlockStructure; bs->cols.resize(num_e_blocks + 1); int col_pos = 0; for (int i = 0; i < num_e_blocks; ++i) { bs->cols[i].position = col_pos; bs->cols[i].size = kEBlockSize; col_pos += kEBlockSize; } bs->cols.back().position = col_pos; bs->cols.back().size = kFBlockSize; bs->rows.resize(2 * num_e_blocks); int row_pos = 0; int cell_pos = 0; for (int i = 0; i < num_e_blocks; ++i) { { auto& row = bs->rows[2 * i]; row.block.position = row_pos; row.block.size = kRowBlockSize; row_pos += kRowBlockSize; auto& cells = row.cells; cells.resize(2); cells[0].block_id = i; cells[0].position = cell_pos; cell_pos += kRowBlockSize * kEBlockSize; cells[1].block_id = num_e_blocks; cells[1].position = cell_pos; cell_pos += kRowBlockSize * kFBlockSize; } { auto& row = bs->rows[2 * i + 1]; row.block.position = row_pos; row.block.size = kRowBlockSize; row_pos += kRowBlockSize; auto& cells = row.cells; cells.resize(1); cells[0].block_id = i; cells[0].position = cell_pos; cell_pos += kRowBlockSize * kEBlockSize; } } matrix_ = std::make_unique(bs); double* values = matrix_->mutable_values(); std::generate_n(values, matrix_->num_nonzeros(), [this] { return standard_normal_(prng_); }); b_.resize(matrix_->num_rows()); b_.setRandom(); std::vector blocks; blocks.emplace_back(kFBlockSize, 0); lhs_ = std::make_unique(blocks, &context_, 1); diagonal_.resize(matrix_->num_cols()); diagonal_.setOnes(); rhs_.resize(kFBlockSize); y_.resize(num_e_blocks * kEBlockSize); y_.setZero(); z_.resize(kFBlockSize); z_.setOnes(); } const BlockSparseMatrix& matrix() const { return *matrix_; } const Vector& b() const { return b_; } const Vector& diagonal() const { return diagonal_; } BlockRandomAccessDenseMatrix* mutable_lhs() { return lhs_.get(); } Vector* mutable_rhs() { return &rhs_; } Vector* mutable_y() { return &y_; } Vector* mutable_z() { return &z_; } ContextImpl* context() { return &context_; } private: ContextImpl context_; std::unique_ptr matrix_; Vector b_; std::unique_ptr lhs_; Vector rhs_; Vector diagonal_; Vector z_; Vector y_; std::mt19937 prng_; std::normal_distribution<> standard_normal_; }; static void BM_SchurEliminatorEliminate(benchmark::State& state) { const int num_e_blocks = state.range(0); BenchmarkData data(num_e_blocks); LinearSolver::Options linear_solver_options; linear_solver_options.e_block_size = kEBlockSize; linear_solver_options.row_block_size = kRowBlockSize; linear_solver_options.f_block_size = kFBlockSize; linear_solver_options.context = data.context(); std::unique_ptr eliminator( SchurEliminatorBase::Create(linear_solver_options)); eliminator->Init(num_e_blocks, true, data.matrix().block_structure()); for (auto _ : state) { eliminator->Eliminate(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_lhs(), data.mutable_rhs()->data()); } } static void BM_SchurEliminatorBackSubstitute(benchmark::State& state) { const int num_e_blocks = state.range(0); BenchmarkData data(num_e_blocks); LinearSolver::Options linear_solver_options; linear_solver_options.e_block_size = kEBlockSize; linear_solver_options.row_block_size = kRowBlockSize; linear_solver_options.f_block_size = kFBlockSize; linear_solver_options.context = data.context(); std::unique_ptr eliminator( SchurEliminatorBase::Create(linear_solver_options)); eliminator->Init(num_e_blocks, true, data.matrix().block_structure()); eliminator->Eliminate(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_lhs(), data.mutable_rhs()->data()); for (auto _ : state) { eliminator->BackSubstitute(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_z()->data(), data.mutable_y()->data()); } } static void BM_SchurEliminatorForOneFBlockEliminate(benchmark::State& state) { const int num_e_blocks = state.range(0); BenchmarkData data(num_e_blocks); SchurEliminatorForOneFBlock<2, 3, 6> eliminator; eliminator.Init(num_e_blocks, true, data.matrix().block_structure()); for (auto _ : state) { eliminator.Eliminate(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_lhs(), data.mutable_rhs()->data()); } } static void BM_SchurEliminatorForOneFBlockBackSubstitute( benchmark::State& state) { const int num_e_blocks = state.range(0); BenchmarkData data(num_e_blocks); SchurEliminatorForOneFBlock<2, 3, 6> eliminator; eliminator.Init(num_e_blocks, true, data.matrix().block_structure()); eliminator.Eliminate(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_lhs(), data.mutable_rhs()->data()); for (auto _ : state) { eliminator.BackSubstitute(BlockSparseMatrixData(data.matrix()), data.b().data(), data.diagonal().data(), data.mutable_z()->data(), data.mutable_y()->data()); } } BENCHMARK(BM_SchurEliminatorEliminate)->Range(10, 10000); BENCHMARK(BM_SchurEliminatorForOneFBlockEliminate)->Range(10, 10000); BENCHMARK(BM_SchurEliminatorBackSubstitute)->Range(10, 10000); BENCHMARK(BM_SchurEliminatorForOneFBlockBackSubstitute)->Range(10, 10000); } // namespace ceres::internal BENCHMARK_MAIN();