// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_ #define CERES_INTERNAL_PARAMETER_BLOCK_H_ #include #include #include #include #include #include #include #include "ceres/array_utils.h" #include "ceres/internal/disable_warnings.h" #include "ceres/internal/eigen.h" #include "ceres/internal/export.h" #include "ceres/manifold.h" #include "ceres/stringprintf.h" #include "glog/logging.h" namespace ceres::internal { class ProblemImpl; class ResidualBlock; // The parameter block encodes the location of the user's original value, and // also the "current state" of the parameter. The evaluator uses whatever is in // the current state of the parameter when evaluating. This is inlined since the // methods are performance sensitive. // // The class is not thread-safe, unless only const methods are called. The // parameter block may also hold a pointer to a manifold; the parameter block // does not take ownership of this pointer, so the user is responsible for the // proper disposal of the manifold. class CERES_NO_EXPORT ParameterBlock { public: using ResidualBlockSet = std::unordered_set; // Create a parameter block with the user state, size, and index specified. // The size is the size of the parameter block and the index is the position // of the parameter block inside a Program (if any). ParameterBlock(double* user_state, int size, int index) : user_state_(user_state), size_(size), state_(user_state), index_(index) {} ParameterBlock(double* user_state, int size, int index, Manifold* manifold) : user_state_(user_state), size_(size), state_(user_state), index_(index) { if (manifold != nullptr) { SetManifold(manifold); } } // The size of the parameter block. int Size() const { return size_; } // Manipulate the parameter state. bool SetState(const double* x) { CHECK(x != nullptr) << "Tried to set the state of constant parameter " << "with user location " << user_state_; CHECK(!IsConstant()) << "Tried to set the state of constant parameter " << "with user location " << user_state_; state_ = x; return UpdatePlusJacobian(); } // Copy the current parameter state out to x. This is "GetState()" rather than // simply "state()" since it is actively copying the data into the passed // pointer. void GetState(double* x) const { if (x != state_) { std::copy(state_, state_ + size_, x); } } // Direct pointers to the current state. const double* state() const { return state_; } const double* user_state() const { return user_state_; } double* mutable_user_state() { return user_state_; } const Manifold* manifold() const { return manifold_; } Manifold* mutable_manifold() { return manifold_; } // Set this parameter block to vary or not. void SetConstant() { is_set_constant_ = true; } void SetVarying() { is_set_constant_ = false; } bool IsConstant() const { return (is_set_constant_ || TangentSize() == 0); } double UpperBound(int index) const { return (upper_bounds_ ? upper_bounds_[index] : std::numeric_limits::max()); } double LowerBound(int index) const { return (lower_bounds_ ? lower_bounds_[index] : -std::numeric_limits::max()); } bool IsUpperBounded() const { return (upper_bounds_ == nullptr); } bool IsLowerBounded() const { return (lower_bounds_ == nullptr); } // This parameter block's index in an array. int index() const { return index_; } void set_index(int index) { index_ = index; } // This parameter offset inside a larger state vector. int state_offset() const { return state_offset_; } void set_state_offset(int state_offset) { state_offset_ = state_offset; } // This parameter offset inside a larger delta vector. int delta_offset() const { return delta_offset_; } void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; } // Methods relating to the parameter block's manifold. // The local to global jacobian. Returns nullptr if there is no manifold for // this parameter block. The returned matrix is row-major and has Size() rows // and TangentSize() columns. const double* PlusJacobian() const { return plus_jacobian_.get(); } int TangentSize() const { return (manifold_ == nullptr) ? size_ : manifold_->TangentSize(); } // Set the manifold. The parameter block does not take ownership of // the manifold. void SetManifold(Manifold* new_manifold) { // Nothing to do if the new manifold is the same as the old // manifold. if (new_manifold == manifold_) { return; } if (new_manifold == nullptr) { manifold_ = nullptr; plus_jacobian_ = nullptr; return; } CHECK_EQ(new_manifold->AmbientSize(), size_) << "The parameter block has size = " << size_ << " while the manifold has ambient size = " << new_manifold->AmbientSize(); CHECK_GE(new_manifold->TangentSize(), 0) << "Invalid Manifold. Manifolds must have a " << "non-negative dimensional tangent space."; manifold_ = new_manifold; plus_jacobian_ = std::make_unique(manifold_->AmbientSize() * manifold_->TangentSize()); CHECK(UpdatePlusJacobian()) << "Manifold::PlusJacobian computation failed for x: " << ConstVectorRef(state_, Size()).transpose(); } void SetUpperBound(int index, double upper_bound) { CHECK_LT(index, size_); if (upper_bound >= std::numeric_limits::max() && !upper_bounds_) { return; } if (!upper_bounds_) { upper_bounds_ = std::make_unique(size_); std::fill(upper_bounds_.get(), upper_bounds_.get() + size_, std::numeric_limits::max()); } upper_bounds_[index] = upper_bound; } void SetLowerBound(int index, double lower_bound) { CHECK_LT(index, size_); if (lower_bound <= -std::numeric_limits::max() && !lower_bounds_) { return; } if (!lower_bounds_) { lower_bounds_ = std::make_unique(size_); std::fill(lower_bounds_.get(), lower_bounds_.get() + size_, -std::numeric_limits::max()); } lower_bounds_[index] = lower_bound; } // Generalization of the addition operation. This is the same as // Manifold::Plus() followed by projection onto the // hyper cube implied by the bounds constraints. bool Plus(const double* x, const double* delta, double* x_plus_delta) { if (manifold_ != nullptr) { if (!manifold_->Plus(x, delta, x_plus_delta)) { return false; } } else { VectorRef(x_plus_delta, size_) = ConstVectorRef(x, size_) + ConstVectorRef(delta, size_); } // Project onto the box constraints. if (lower_bounds_.get() != nullptr) { for (int i = 0; i < size_; ++i) { x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]); } } if (upper_bounds_.get() != nullptr) { for (int i = 0; i < size_; ++i) { x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]); } } return true; } std::string ToString() const { return StringPrintf( "{ this=%p, user_state=%p, state=%p, size=%d, " "constant=%d, index=%d, state_offset=%d, " "delta_offset=%d }", this, user_state_, state_, size_, is_set_constant_, index_, state_offset_, delta_offset_); } void EnableResidualBlockDependencies() { CHECK(residual_blocks_.get() == nullptr) << "Ceres bug: There is already a residual block collection " << "for parameter block: " << ToString(); residual_blocks_ = std::make_unique(); } void AddResidualBlock(ResidualBlock* residual_block) { CHECK(residual_blocks_.get() != nullptr) << "Ceres bug: The residual block collection is null for parameter " << "block: " << ToString(); residual_blocks_->insert(residual_block); } void RemoveResidualBlock(ResidualBlock* residual_block) { CHECK(residual_blocks_.get() != nullptr) << "Ceres bug: The residual block collection is null for parameter " << "block: " << ToString(); CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end()) << "Ceres bug: Missing residual for parameter block: " << ToString(); residual_blocks_->erase(residual_block); } // This is only intended for iterating; perhaps this should only expose // .begin() and .end(). ResidualBlockSet* mutable_residual_blocks() { return residual_blocks_.get(); } double LowerBoundForParameter(int index) const { if (lower_bounds_.get() == nullptr) { return -std::numeric_limits::max(); } else { return lower_bounds_[index]; } } double UpperBoundForParameter(int index) const { if (upper_bounds_.get() == nullptr) { return std::numeric_limits::max(); } else { return upper_bounds_[index]; } } private: bool UpdatePlusJacobian() { if (manifold_ == nullptr) { return true; } // Update the Plus Jacobian. In some cases this is // wasted effort; if this is a bottleneck, we will find a solution // at that time. const int jacobian_size = Size() * TangentSize(); InvalidateArray(jacobian_size, plus_jacobian_.get()); if (!manifold_->PlusJacobian(state_, plus_jacobian_.get())) { LOG(WARNING) << "Manifold::PlusJacobian computation failed" "for x: " << ConstVectorRef(state_, Size()).transpose(); return false; } if (!IsArrayValid(jacobian_size, plus_jacobian_.get())) { LOG(WARNING) << "Manifold::PlusJacobian computation returned " << "an invalid matrix for x: " << ConstVectorRef(state_, Size()).transpose() << "\n Jacobian matrix : " << ConstMatrixRef( plus_jacobian_.get(), Size(), TangentSize()); return false; } return true; } double* user_state_ = nullptr; int size_ = -1; bool is_set_constant_ = false; Manifold* manifold_ = nullptr; // The "state" of the parameter. These fields are only needed while the // solver is running. While at first glance using mutable is a bad idea, this // ends up simplifying the internals of Ceres enough to justify the potential // pitfalls of using "mutable." mutable const double* state_ = nullptr; mutable std::unique_ptr plus_jacobian_; // The index of the parameter. This is used by various other parts of Ceres to // permit switching from a ParameterBlock* to an index in another array. int index_ = -1; // The offset of this parameter block inside a larger state vector. int state_offset_ = -1; // The offset of this parameter block inside a larger delta vector. int delta_offset_ = -1; // If non-null, contains the residual blocks this parameter block is in. std::unique_ptr residual_blocks_; // Upper and lower bounds for the parameter block. SetUpperBound // and SetLowerBound lazily initialize the upper_bounds_ and // lower_bounds_ arrays. If they are never called, then memory for // these arrays is never allocated. Thus for problems where there // are no bounds, or only one sided bounds we do not pay the cost of // allocating memory for the inactive bounds constraints. // // Upon initialization these arrays are initialized to // std::numeric_limits::max() and // -std::numeric_limits::max() respectively which correspond // to the parameter block being unconstrained. std::unique_ptr upper_bounds_; std::unique_ptr lower_bounds_; // Necessary so ProblemImpl can clean up the manifolds. friend class ProblemImpl; }; } // namespace ceres::internal #include "ceres/internal/reenable_warnings.h" #endif // CERES_INTERNAL_PARAMETER_BLOCK_H_