// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/normal_prior.h" #include #include #include #include "ceres/internal/eigen.h" #include "gtest/gtest.h" namespace ceres { namespace internal { TEST(NormalPriorTest, ResidualAtRandomPosition) { std::mt19937 prng; std::uniform_real_distribution distribution(-1.0, 1.0); auto randu = [&distribution, &prng] { return distribution(prng); }; for (int num_rows = 1; num_rows < 5; ++num_rows) { for (int num_cols = 1; num_cols < 5; ++num_cols) { Vector b(num_cols); b.setRandom(); Matrix A(num_rows, num_cols); A.setRandom(); auto* x = new double[num_cols]; std::generate_n(x, num_cols, randu); auto* jacobian = new double[num_rows * num_cols]; Vector residuals(num_rows); NormalPrior prior(A, b); prior.Evaluate(&x, residuals.data(), &jacobian); // Compare the norm of the residual double residual_diff_norm = (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); EXPECT_NEAR(residual_diff_norm, 0, 1e-10); // Compare the jacobians MatrixRef J(jacobian, num_rows, num_cols); double jacobian_diff_norm = (J - A).norm(); EXPECT_NEAR(jacobian_diff_norm, 0.0, 1e-10); delete[] x; delete[] jacobian; } } } TEST(NormalPriorTest, ResidualAtRandomPositionNullJacobians) { std::mt19937 prng; std::uniform_real_distribution distribution(-1.0, 1.0); auto randu = [&distribution, &prng] { return distribution(prng); }; for (int num_rows = 1; num_rows < 5; ++num_rows) { for (int num_cols = 1; num_cols < 5; ++num_cols) { Vector b(num_cols); b.setRandom(); Matrix A(num_rows, num_cols); A.setRandom(); auto* x = new double[num_cols]; std::generate_n(x, num_cols, randu); double* jacobians[1]; jacobians[0] = nullptr; Vector residuals(num_rows); NormalPrior prior(A, b); prior.Evaluate(&x, residuals.data(), jacobians); // Compare the norm of the residual double residual_diff_norm = (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); EXPECT_NEAR(residual_diff_norm, 0, 1e-10); prior.Evaluate(&x, residuals.data(), nullptr); // Compare the norm of the residual residual_diff_norm = (residuals - A * (VectorRef(x, num_cols) - b)).squaredNorm(); EXPECT_NEAR(residual_diff_norm, 0, 1e-10); delete[] x; } } } } // namespace internal } // namespace ceres