// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_ #define CERES_INTERNAL_INVERT_PSD_MATRIX_H_ #include "Eigen/Dense" #include "ceres/internal/eigen.h" #include "glog/logging.h" namespace ceres::internal { // Helper routine to compute the inverse or pseudo-inverse of a // symmetric positive semi-definite matrix. // // assume_full_rank controls whether a Cholesky factorization or an // Singular Value Decomposition is used to compute the inverse and the // pseudo-inverse respectively. // // The template parameter kSize can either be Eigen::Dynamic or a // positive integer equal to the number of rows of m. template typename EigenTypes::Matrix InvertPSDMatrix( const bool assume_full_rank, const typename EigenTypes::Matrix& m) { using MType = typename EigenTypes::Matrix; const int size = m.rows(); // If the matrix can be assumed to be full rank, then if it is small // (< 5) and fixed size, use Eigen's optimized inverse() // implementation. // // https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html#title3 if (assume_full_rank) { if (kSize > 0 && kSize < 5) { return m.inverse(); } return m.template selfadjointView().llt().solve( MType::Identity(size, size)); } // For a thin SVD the number of columns of the matrix need to be dynamic. using SVDMType = typename EigenTypes::Matrix; Eigen::JacobiSVD svd(m, Eigen::ComputeThinU | Eigen::ComputeThinV); return svd.solve(MType::Identity(size, size)); } } // namespace ceres::internal #endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_