// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: strandmark@google.com (Petter Strandmark) #include "ceres/gradient_problem_solver.h" #include "ceres/gradient_problem.h" #include "gtest/gtest.h" namespace ceres::internal { // Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function . class Rosenbrock : public ceres::FirstOrderFunction { public: bool Evaluate(const double* parameters, double* cost, double* gradient) const final { const double x = parameters[0]; const double y = parameters[1]; cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); if (gradient != nullptr) { gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; gradient[1] = 200.0 * (y - x * x); } return true; } int NumParameters() const final { return 2; } }; TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) { const double expected_tolerance = 1e-9; double parameters[2] = {-1.2, 0.0}; ceres::GradientProblemSolver::Options options; ceres::GradientProblemSolver::Summary summary; ceres::GradientProblem problem(new Rosenbrock()); ceres::Solve(options, problem, parameters, &summary); EXPECT_EQ(CONVERGENCE, summary.termination_type); EXPECT_NEAR(1.0, parameters[0], expected_tolerance); EXPECT_NEAR(1.0, parameters[1], expected_tolerance); } class QuadraticFunction : public ceres::FirstOrderFunction { bool Evaluate(const double* parameters, double* cost, double* gradient) const final { const double x = parameters[0]; *cost = 0.5 * (5.0 - x) * (5.0 - x); if (gradient != nullptr) { gradient[0] = x - 5.0; } return true; } int NumParameters() const final { return 1; } }; struct RememberingCallback : public IterationCallback { explicit RememberingCallback(double* x) : calls(0), x(x) {} CallbackReturnType operator()(const IterationSummary& summary) final { x_values.push_back(*x); return SOLVER_CONTINUE; } int calls; double* x; std::vector x_values; }; TEST(Solver, UpdateStateEveryIterationOption) { double x = 50.0; const double original_x = x; ceres::GradientProblem problem(new QuadraticFunction); ceres::GradientProblemSolver::Options options; RememberingCallback callback(&x); options.callbacks.push_back(&callback); ceres::GradientProblemSolver::Summary summary; int num_iterations; // First try: no updating. ceres::Solve(options, problem, &x, &summary); num_iterations = summary.iterations.size() - 1; EXPECT_GT(num_iterations, 1); for (double value : callback.x_values) { EXPECT_EQ(50.0, value); } // Second try: with updating x = 50.0; options.update_state_every_iteration = true; callback.x_values.clear(); ceres::Solve(options, problem, &x, &summary); num_iterations = summary.iterations.size() - 1; EXPECT_GT(num_iterations, 1); EXPECT_EQ(original_x, callback.x_values[0]); EXPECT_NE(original_x, callback.x_values[1]); } } // namespace ceres::internal