// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Authors: joydeepb@cs.utexas.edu (Joydeep Biswas) #include "ceres/fake_bundle_adjustment_jacobian.h" #include #include #include #include #include "Eigen/Dense" #include "ceres/block_sparse_matrix.h" #include "ceres/internal/eigen.h" namespace ceres::internal { std::unique_ptr CreateFakeBundleAdjustmentJacobian( int num_cameras, int num_points, int camera_size, int point_size, double visibility, std::mt19937& prng) { constexpr int kResidualSize = 2; CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; int c = 0; // Add column blocks for each point for (int i = 0; i < num_points; ++i) { bs->cols.push_back(Block(point_size, c)); c += point_size; } // Add column blocks for each camera. for (int i = 0; i < num_cameras; ++i) { bs->cols.push_back(Block(camera_size, c)); c += camera_size; } std::bernoulli_distribution visibility_distribution(visibility); int row_pos = 0; int cell_pos = 0; for (int i = 0; i < num_points; ++i) { for (int j = 0; j < num_cameras; ++j) { if (!visibility_distribution(prng)) { continue; } bs->rows.emplace_back(); auto& row = bs->rows.back(); row.block.position = row_pos; row.block.size = kResidualSize; auto& cells = row.cells; cells.resize(2); cells[0].block_id = i; cells[0].position = cell_pos; cell_pos += kResidualSize * point_size; cells[1].block_id = num_points + j; cells[1].position = cell_pos; cell_pos += kResidualSize * camera_size; row_pos += kResidualSize; } } auto jacobian = std::make_unique(bs); VectorRef(jacobian->mutable_values(), jacobian->num_nonzeros()).setRandom(); return jacobian; } std::pair< std::unique_ptr>, std::unique_ptr> CreateFakeBundleAdjustmentPartitionedJacobian(int num_cameras, int num_points, int camera_size, int landmark_size, double visibility, std::mt19937& rng) { using PartitionedView = PartitionedMatrixView<2, Eigen::Dynamic, Eigen::Dynamic>; auto block_sparse_matrix = CreateFakeBundleAdjustmentJacobian( num_cameras, num_points, camera_size, landmark_size, visibility, rng); LinearSolver::Options options; options.elimination_groups.push_back(num_points); auto partitioned_view = std::make_unique(options, *block_sparse_matrix); return std::make_pair(std::move(partitioned_view), std::move(block_sparse_matrix)); } } // namespace ceres::internal