// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #ifndef CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ #define CERES_INTERNAL_EIGEN_VECTOR_OPS_H_ #include #include "ceres/internal/eigen.h" #include "ceres/internal/fixed_array.h" #include "ceres/parallel_for.h" #include "ceres/parallel_vector_ops.h" namespace ceres::internal { // Blas1 operations on Eigen vectors. These functions are needed as an // abstraction layer so that we can use different versions of a vector style // object in the conjugate gradients linear solver. template inline double Norm(const Eigen::DenseBase& x, ContextImpl* context, int num_threads) { FixedArray norms(num_threads, 0.); ParallelFor( context, 0, x.rows(), num_threads, [&x, &norms](int thread_id, std::tuple range) { auto [start, end] = range; norms[thread_id] += x.segment(start, end - start).squaredNorm(); }, kMinBlockSizeParallelVectorOps); return std::sqrt(std::accumulate(norms.begin(), norms.end(), 0.)); } inline void SetZero(Vector& x, ContextImpl* context, int num_threads) { ParallelSetZero(context, num_threads, x); } inline void Axpby(double a, const Vector& x, double b, const Vector& y, Vector& z, ContextImpl* context, int num_threads) { ParallelAssign(context, num_threads, z, a * x + b * y); } template inline double Dot(const VectorLikeX& x, const VectorLikeY& y, ContextImpl* context, int num_threads) { FixedArray dots(num_threads, 0.); ParallelFor( context, 0, x.rows(), num_threads, [&x, &y, &dots](int thread_id, std::tuple range) { auto [start, end] = range; const int block_size = end - start; const auto& x_block = x.segment(start, block_size); const auto& y_block = y.segment(start, block_size); dots[thread_id] += x_block.dot(y_block); }, kMinBlockSizeParallelVectorOps); return std::accumulate(dots.begin(), dots.end(), 0.); } inline void Copy(const Vector& from, Vector& to, ContextImpl* context, int num_threads) { ParallelAssign(context, num_threads, to, from); } } // namespace ceres::internal #endif // CERES_INTERNAL_EIGEN_VECTOR_OPS_H_