// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/dense_normal_cholesky_solver.h" #include #include "Eigen/Dense" #include "ceres/dense_sparse_matrix.h" #include "ceres/internal/eigen.h" #include "ceres/linear_solver.h" #include "ceres/types.h" #include "ceres/wall_time.h" namespace ceres::internal { DenseNormalCholeskySolver::DenseNormalCholeskySolver( LinearSolver::Options options) : options_(std::move(options)), cholesky_(DenseCholesky::Create(options_)) {} LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl( DenseSparseMatrix* A, const double* b, const LinearSolver::PerSolveOptions& per_solve_options, double* x) { EventLogger event_logger("DenseNormalCholeskySolver::Solve"); const int num_rows = A->num_rows(); const int num_cols = A->num_cols(); Matrix lhs(num_cols, num_cols); lhs.setZero(); event_logger.AddEvent("Setup"); // lhs += A'A // // Using rankUpdate instead of GEMM, exposes the fact that its the // same matrix being multiplied with itself and that the product is // symmetric. lhs.selfadjointView().rankUpdate(A->matrix().transpose()); // rhs = A'b Vector rhs = A->matrix().transpose() * ConstVectorRef(b, num_rows); if (per_solve_options.D != nullptr) { ConstVectorRef D(per_solve_options.D, num_cols); lhs += D.array().square().matrix().asDiagonal(); } event_logger.AddEvent("Product"); LinearSolver::Summary summary; summary.num_iterations = 1; summary.termination_type = cholesky_->FactorAndSolve( num_cols, lhs.data(), rhs.data(), x, &summary.message); event_logger.AddEvent("FactorAndSolve"); return summary; } } // namespace ceres::internal