// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) #include "ceres/cuda_block_structure.h" #ifndef CERES_NO_CUDA namespace ceres::internal { namespace { // Dimension of a sorted array of blocks inline int Dimension(const std::vector& blocks) { if (blocks.empty()) { return 0; } const auto& last = blocks.back(); return last.size + last.position; } } // namespace CudaBlockSparseStructure::CudaBlockSparseStructure( const CompressedRowBlockStructure& block_structure, ContextImpl* context) : CudaBlockSparseStructure(block_structure, 0, context) {} CudaBlockSparseStructure::CudaBlockSparseStructure( const CompressedRowBlockStructure& block_structure, const int num_col_blocks_e, ContextImpl* context) : first_cell_in_row_block_(context), value_offset_row_block_f_(context), cells_(context), row_blocks_(context), col_blocks_(context) { // Row blocks extracted from CompressedRowBlockStructure::rows std::vector row_blocks; // Column blocks can be reused as-is const auto& col_blocks = block_structure.cols; // Row block offset is an index of the first cell corresponding to row block std::vector first_cell_in_row_block; // Offset of the first value in the first non-empty row-block of F sub-matrix std::vector value_offset_row_block_f; // Flat array of all cells from all row-blocks std::vector cells; int f_values_offset = -1; num_nonzeros_e_ = 0; is_crs_compatible_ = true; num_row_blocks_ = block_structure.rows.size(); num_col_blocks_ = col_blocks.size(); row_blocks.reserve(num_row_blocks_); first_cell_in_row_block.reserve(num_row_blocks_ + 1); value_offset_row_block_f.reserve(num_row_blocks_ + 1); num_nonzeros_ = 0; // Block-sparse matrices arising from block-jacobian writer are expected to // have sequential layout (for partitioned matrices - it is expected that both // E and F sub-matrices have sequential layout). bool sequential_layout = true; int row_block_id = 0; num_row_blocks_e_ = 0; for (; row_block_id < num_row_blocks_; ++row_block_id) { const auto& r = block_structure.rows[row_block_id]; const int row_block_size = r.block.size; const int num_cells = r.cells.size(); if (num_col_blocks_e == 0 || r.cells.size() == 0 || r.cells[0].block_id >= num_col_blocks_e) { break; } num_row_blocks_e_ = row_block_id + 1; // In E sub-matrix there is exactly a single E cell in the row // since E cells are stored separately from F cells, crs-compatiblity of // F sub-matrix only breaks if there are more than 2 cells in row (that // is, more than 1 cell in F sub-matrix) if (num_cells > 2 && row_block_size > 1) { is_crs_compatible_ = false; } row_blocks.emplace_back(r.block); first_cell_in_row_block.push_back(cells.size()); for (int cell_id = 0; cell_id < num_cells; ++cell_id) { const auto& c = r.cells[cell_id]; const int col_block_size = col_blocks[c.block_id].size; const int cell_size = col_block_size * row_block_size; cells.push_back(c); if (cell_id == 0) { DCHECK(c.position == num_nonzeros_e_); num_nonzeros_e_ += cell_size; } else { if (f_values_offset == -1) { num_nonzeros_ = c.position; f_values_offset = c.position; } sequential_layout &= c.position == num_nonzeros_; num_nonzeros_ += cell_size; if (cell_id == 1) { // Correct value_offset_row_block_f for empty row-blocks of F // preceding this one for (auto it = value_offset_row_block_f.rbegin(); it != value_offset_row_block_f.rend(); ++it) { if (*it != -1) break; *it = c.position; } value_offset_row_block_f.push_back(c.position); } } } if (num_cells == 1) { value_offset_row_block_f.push_back(-1); } } for (; row_block_id < num_row_blocks_; ++row_block_id) { const auto& r = block_structure.rows[row_block_id]; const int row_block_size = r.block.size; const int num_cells = r.cells.size(); // After num_row_blocks_e_ row-blocks, there should be no cells in E // sub-matrix. Thus crs-compatibility of F sub-matrix breaks if there are // more than one cells in the row-block if (num_cells > 1 && row_block_size > 1) { is_crs_compatible_ = false; } row_blocks.emplace_back(r.block); first_cell_in_row_block.push_back(cells.size()); if (r.cells.empty()) { value_offset_row_block_f.push_back(-1); } else { for (auto it = value_offset_row_block_f.rbegin(); it != value_offset_row_block_f.rend(); --it) { if (*it != -1) break; *it = cells[0].position; } value_offset_row_block_f.push_back(r.cells[0].position); } for (const auto& c : r.cells) { const int col_block_size = col_blocks[c.block_id].size; const int cell_size = col_block_size * row_block_size; cells.push_back(c); DCHECK(c.block_id >= num_col_blocks_e); if (f_values_offset == -1) { num_nonzeros_ = c.position; f_values_offset = c.position; } sequential_layout &= c.position == num_nonzeros_; num_nonzeros_ += cell_size; } } if (f_values_offset == -1) { f_values_offset = num_nonzeros_e_; num_nonzeros_ = num_nonzeros_e_; } // Fill non-zero offsets for the last rows of F submatrix for (auto it = value_offset_row_block_f.rbegin(); it != value_offset_row_block_f.rend(); ++it) { if (*it != -1) break; *it = num_nonzeros_; } value_offset_row_block_f.push_back(num_nonzeros_); CHECK_EQ(num_nonzeros_e_, f_values_offset); first_cell_in_row_block.push_back(cells.size()); num_cells_ = cells.size(); num_rows_ = Dimension(row_blocks); num_cols_ = Dimension(col_blocks); CHECK(sequential_layout); if (VLOG_IS_ON(3)) { const size_t first_cell_in_row_block_size = first_cell_in_row_block.size() * sizeof(int); const size_t cells_size = cells.size() * sizeof(Cell); const size_t row_blocks_size = row_blocks.size() * sizeof(Block); const size_t col_blocks_size = col_blocks.size() * sizeof(Block); const size_t total_size = first_cell_in_row_block_size + cells_size + col_blocks_size + row_blocks_size; const double ratio = (100. * total_size) / (num_nonzeros_ * (sizeof(int) + sizeof(double)) + num_rows_ * sizeof(int)); VLOG(3) << "\nCudaBlockSparseStructure:\n" "\tRow block offsets: " << first_cell_in_row_block_size << " bytes\n" "\tColumn blocks: " << col_blocks_size << " bytes\n" "\tRow blocks: " << row_blocks_size << " bytes\n" "\tCells: " << cells_size << " bytes\n\tTotal: " << total_size << " bytes of GPU memory (" << ratio << "% of CRS matrix size)"; } first_cell_in_row_block_.CopyFromCpuVector(first_cell_in_row_block); cells_.CopyFromCpuVector(cells); row_blocks_.CopyFromCpuVector(row_blocks); col_blocks_.CopyFromCpuVector(col_blocks); if (num_col_blocks_e || num_row_blocks_e_) { value_offset_row_block_f_.CopyFromCpuVector(value_offset_row_block_f); } } } // namespace ceres::internal #endif // CERES_NO_CUDA