// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/block_random_access_diagonal_matrix.h" #include #include #include #include "Eigen/Cholesky" #include "ceres/internal/eigen.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres::internal { class BlockRandomAccessDiagonalMatrixTest : public ::testing::Test { public: void SetUp() override { std::vector blocks; blocks.emplace_back(3, 0); blocks.emplace_back(4, 3); blocks.emplace_back(5, 7); const int num_rows = 3 + 4 + 5; num_nonzeros_ = 3 * 3 + 4 * 4 + 5 * 5; m_ = std::make_unique(blocks, &context_, 1); EXPECT_EQ(m_->num_rows(), num_rows); EXPECT_EQ(m_->num_cols(), num_rows); for (int i = 0; i < blocks.size(); ++i) { const int row_block_id = i; int col_block_id; int row; int col; int row_stride; int col_stride; for (int j = 0; j < blocks.size(); ++j) { col_block_id = j; CellInfo* cell = m_->GetCell( row_block_id, col_block_id, &row, &col, &row_stride, &col_stride); // Off diagonal entries are not present. if (i != j) { EXPECT_TRUE(cell == nullptr); continue; } EXPECT_TRUE(cell != nullptr); EXPECT_EQ(row, 0); EXPECT_EQ(col, 0); EXPECT_EQ(row_stride, blocks[row_block_id].size); EXPECT_EQ(col_stride, blocks[col_block_id].size); // Write into the block MatrixRef(cell->values, row_stride, col_stride) .block(row, col, blocks[row_block_id].size, blocks[col_block_id].size) = (row_block_id + 1) * (col_block_id + 1) * Matrix::Ones(blocks[row_block_id].size, blocks[col_block_id].size) + Matrix::Identity(blocks[row_block_id].size, blocks[row_block_id].size); } } } protected: ContextImpl context_; int num_nonzeros_; std::unique_ptr m_; }; TEST_F(BlockRandomAccessDiagonalMatrixTest, MatrixContents) { auto* crsm = m_->matrix(); EXPECT_EQ(crsm->num_nonzeros(), num_nonzeros_); Matrix dense; crsm->ToDenseMatrix(&dense); double kTolerance = 1e-14; // (0,0) EXPECT_NEAR( (dense.block(0, 0, 3, 3) - (Matrix::Ones(3, 3) + Matrix::Identity(3, 3))) .norm(), 0.0, kTolerance); // (1,1) EXPECT_NEAR((dense.block(3, 3, 4, 4) - (2 * 2 * Matrix::Ones(4, 4) + Matrix::Identity(4, 4))) .norm(), 0.0, kTolerance); // (1,1) EXPECT_NEAR((dense.block(7, 7, 5, 5) - (3 * 3 * Matrix::Ones(5, 5) + Matrix::Identity(5, 5))) .norm(), 0.0, kTolerance); // There is nothing else in the matrix besides these four blocks. EXPECT_NEAR( dense.norm(), sqrt(6 * 1.0 + 3 * 4.0 + 12 * 16.0 + 4 * 25.0 + 20 * 81.0 + 5 * 100.0), kTolerance); } TEST_F(BlockRandomAccessDiagonalMatrixTest, RightMultiplyAndAccumulate) { double kTolerance = 1e-14; auto* crsm = m_->matrix(); Matrix dense; crsm->ToDenseMatrix(&dense); Vector x = Vector::Random(dense.rows()); Vector expected_y = dense * x; Vector actual_y = Vector::Zero(dense.rows()); m_->RightMultiplyAndAccumulate(x.data(), actual_y.data()); EXPECT_NEAR((expected_y - actual_y).norm(), 0, kTolerance); } TEST_F(BlockRandomAccessDiagonalMatrixTest, Invert) { double kTolerance = 1e-14; auto* crsm = m_->matrix(); Matrix dense; crsm->ToDenseMatrix(&dense); Matrix expected_inverse = dense.llt().solve(Matrix::Identity(dense.rows(), dense.rows())); m_->Invert(); crsm->ToDenseMatrix(&dense); EXPECT_NEAR((expected_inverse - dense).norm(), 0.0, kTolerance); } } // namespace ceres::internal