// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/autodiff_manifold.h" #include #include "ceres/constants.h" #include "ceres/manifold.h" #include "ceres/manifold_test_utils.h" #include "ceres/rotation.h" #include "gtest/gtest.h" namespace ceres::internal { namespace { constexpr int kNumTrials = 1000; constexpr double kTolerance = 1e-9; Vector RandomQuaternion() { Vector x = Vector::Random(4); x.normalize(); return x; } } // namespace struct EuclideanFunctor { template bool Plus(const T* x, const T* delta, T* x_plus_delta) const { for (int i = 0; i < 3; ++i) { x_plus_delta[i] = x[i] + delta[i]; } return true; } template bool Minus(const T* y, const T* x, T* y_minus_x) const { for (int i = 0; i < 3; ++i) { y_minus_x[i] = y[i] - x[i]; } return true; } }; TEST(AutoDiffLManifoldTest, EuclideanManifold) { AutoDiffManifold manifold; EXPECT_EQ(manifold.AmbientSize(), 3); EXPECT_EQ(manifold.TangentSize(), 3); for (int trial = 0; trial < kNumTrials; ++trial) { const Vector x = Vector::Random(manifold.AmbientSize()); const Vector y = Vector::Random(manifold.AmbientSize()); Vector delta = Vector::Random(manifold.TangentSize()); Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); EXPECT_NEAR((x_plus_delta - x - delta).norm() / (x + delta).norm(), 0.0, kTolerance); EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); } } struct ScaledFunctor { explicit ScaledFunctor(const double s) : s(s) {} template bool Plus(const T* x, const T* delta, T* x_plus_delta) const { for (int i = 0; i < 3; ++i) { x_plus_delta[i] = x[i] + s * delta[i]; } return true; } template bool Minus(const T* y, const T* x, T* y_minus_x) const { for (int i = 0; i < 3; ++i) { y_minus_x[i] = (y[i] - x[i]) / s; } return true; } const double s; }; TEST(AutoDiffManifoldTest, ScaledManifold) { constexpr double kScale = 1.2342; AutoDiffManifold manifold(new ScaledFunctor(kScale)); EXPECT_EQ(manifold.AmbientSize(), 3); EXPECT_EQ(manifold.TangentSize(), 3); for (int trial = 0; trial < kNumTrials; ++trial) { const Vector x = Vector::Random(manifold.AmbientSize()); const Vector y = Vector::Random(manifold.AmbientSize()); Vector delta = Vector::Random(manifold.TangentSize()); Vector x_plus_delta = Vector::Zero(manifold.AmbientSize()); manifold.Plus(x.data(), delta.data(), x_plus_delta.data()); EXPECT_NEAR((x_plus_delta - x - delta * kScale).norm() / (x + delta * kScale).norm(), 0.0, kTolerance); EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); } } // Templated functor that implements the Plus and Minus operations on the // Quaternion manifold. struct QuaternionFunctor { template bool Plus(const T* x, const T* delta, T* x_plus_delta) const { const T squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; T q_delta[4]; if (squared_norm_delta > T(0.0)) { T norm_delta = sqrt(squared_norm_delta); const T sin_delta_by_delta = sin(norm_delta) / norm_delta; q_delta[0] = cos(norm_delta); q_delta[1] = sin_delta_by_delta * delta[0]; q_delta[2] = sin_delta_by_delta * delta[1]; q_delta[3] = sin_delta_by_delta * delta[2]; } else { // We do not just use q_delta = [1,0,0,0] here because that is a // constant and when used for automatic differentiation will // lead to a zero derivative. Instead we take a first order // approximation and evaluate it at zero. q_delta[0] = T(1.0); q_delta[1] = delta[0]; q_delta[2] = delta[1]; q_delta[3] = delta[2]; } QuaternionProduct(q_delta, x, x_plus_delta); return true; } template bool Minus(const T* y, const T* x, T* y_minus_x) const { T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; T ambient_y_minus_x[4]; QuaternionProduct(y, minus_x, ambient_y_minus_x); T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + ambient_y_minus_x[2] * ambient_y_minus_x[2] + ambient_y_minus_x[3] * ambient_y_minus_x[3]); if (u_norm > 0.0) { T theta = atan2(u_norm, ambient_y_minus_x[0]); y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; } else { // We do not use [0,0,0] here because even though the value part is // a constant, the derivative part is not. y_minus_x[0] = ambient_y_minus_x[1]; y_minus_x[1] = ambient_y_minus_x[2]; y_minus_x[2] = ambient_y_minus_x[3]; } return true; } }; TEST(AutoDiffManifoldTest, QuaternionPlusPiBy2) { AutoDiffManifold manifold; Vector x = Vector::Zero(4); x[0] = 1.0; for (int i = 0; i < 3; ++i) { Vector delta = Vector::Zero(3); delta[i] = constants::pi / 2; Vector x_plus_delta = Vector::Zero(4); EXPECT_TRUE(manifold.Plus(x.data(), delta.data(), x_plus_delta.data())); // Expect that the element corresponding to pi/2 is +/- 1. All other // elements should be zero. for (int j = 0; j < 4; ++j) { if (i == (j - 1)) { EXPECT_LT(std::abs(x_plus_delta[j]) - 1, std::numeric_limits::epsilon()) << "\ndelta = " << delta.transpose() << "\nx_plus_delta = " << x_plus_delta.transpose() << "\n expected the " << j << "th element of x_plus_delta to be +/- 1."; } else { EXPECT_LT(std::abs(x_plus_delta[j]), std::numeric_limits::epsilon()) << "\ndelta = " << delta.transpose() << "\nx_plus_delta = " << x_plus_delta.transpose() << "\n expected the " << j << "th element of x_plus_delta to be 0."; } } EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD( manifold, x, delta, x_plus_delta, kTolerance); } } // Compute the expected value of Quaternion::Plus via functions in rotation.h // and compares it to the one computed by Quaternion::Plus. MATCHER_P2(QuaternionPlusIsCorrectAt, x, delta, "") { // This multiplication by 2 is needed because AngleAxisToQuaternion uses // |delta|/2 as the angle of rotation where as in the implementation of // Quaternion for historical reasons we use |delta|. const Vector two_delta = delta * 2; Vector delta_q(4); AngleAxisToQuaternion(two_delta.data(), delta_q.data()); Vector expected(4); QuaternionProduct(delta_q.data(), x.data(), expected.data()); Vector actual(4); EXPECT_TRUE(arg.Plus(x.data(), delta.data(), actual.data())); const double n = (actual - expected).norm(); const double d = expected.norm(); const double diffnorm = n / d; if (diffnorm > kTolerance) { *result_listener << "\nx: " << x.transpose() << "\ndelta: " << delta.transpose() << "\nexpected: " << expected.transpose() << "\nactual: " << actual.transpose() << "\ndiff: " << (expected - actual).transpose() << "\ndiffnorm : " << diffnorm; return false; } return true; } TEST(AutoDiffManifoldTest, QuaternionGenericDelta) { AutoDiffManifold manifold; for (int trial = 0; trial < kNumTrials; ++trial) { const Vector x = RandomQuaternion(); const Vector y = RandomQuaternion(); Vector delta = Vector::Random(3); EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); } } TEST(AutoDiffManifoldTest, QuaternionSmallDelta) { AutoDiffManifold manifold; for (int trial = 0; trial < kNumTrials; ++trial) { const Vector x = RandomQuaternion(); const Vector y = RandomQuaternion(); Vector delta = Vector::Random(3); delta.normalize(); delta *= 1e-6; EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); } } TEST(AutoDiffManifold, QuaternionDeltaJustBelowPi) { AutoDiffManifold manifold; for (int trial = 0; trial < kNumTrials; ++trial) { const Vector x = RandomQuaternion(); const Vector y = RandomQuaternion(); Vector delta = Vector::Random(3); delta.normalize(); delta *= (constants::pi - 1e-6); EXPECT_THAT(manifold, QuaternionPlusIsCorrectAt(x, delta)); EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance); } } } // namespace ceres::internal