""" This file is part of the private API. Please do not use directly these classes as they will be modified on future versions without warning. The classes should be accessed only via the transforms argument of Weights. """ from typing import Optional, Tuple, Union import torch from torch import nn, Tensor from . import functional as F, InterpolationMode __all__ = [ "ObjectDetection", "ImageClassification", "VideoClassification", "SemanticSegmentation", "OpticalFlow", ] class ObjectDetection(nn.Module): def forward(self, img: Tensor) -> Tensor: if not isinstance(img, Tensor): img = F.pil_to_tensor(img) return F.convert_image_dtype(img, torch.float) def __repr__(self) -> str: return self.__class__.__name__ + "()" def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " "The images are rescaled to ``[0.0, 1.0]``." ) class ImageClassification(nn.Module): def __init__( self, *, crop_size: int, resize_size: int = 256, mean: Tuple[float, ...] = (0.485, 0.456, 0.406), std: Tuple[float, ...] = (0.229, 0.224, 0.225), interpolation: InterpolationMode = InterpolationMode.BILINEAR, antialias: Optional[Union[str, bool]] = "warn", ) -> None: super().__init__() self.crop_size = [crop_size] self.resize_size = [resize_size] self.mean = list(mean) self.std = list(std) self.interpolation = interpolation self.antialias = antialias def forward(self, img: Tensor) -> Tensor: img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias) img = F.center_crop(img, self.crop_size) if not isinstance(img, Tensor): img = F.pil_to_tensor(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self.mean, std=self.std) return img def __repr__(self) -> str: format_string = self.__class__.__name__ + "(" format_string += f"\n crop_size={self.crop_size}" format_string += f"\n resize_size={self.resize_size}" format_string += f"\n mean={self.mean}" format_string += f"\n std={self.std}" format_string += f"\n interpolation={self.interpolation}" format_string += "\n)" return format_string def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, " f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to " f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``." ) class VideoClassification(nn.Module): def __init__( self, *, crop_size: Tuple[int, int], resize_size: Tuple[int, int], mean: Tuple[float, ...] = (0.43216, 0.394666, 0.37645), std: Tuple[float, ...] = (0.22803, 0.22145, 0.216989), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() self.crop_size = list(crop_size) self.resize_size = list(resize_size) self.mean = list(mean) self.std = list(std) self.interpolation = interpolation def forward(self, vid: Tensor) -> Tensor: need_squeeze = False if vid.ndim < 5: vid = vid.unsqueeze(dim=0) need_squeeze = True N, T, C, H, W = vid.shape vid = vid.view(-1, C, H, W) # We hard-code antialias=False to preserve results after we changed # its default from None to True (see # https://github.com/pytorch/vision/pull/7160) # TODO: we could re-train the video models with antialias=True? vid = F.resize(vid, self.resize_size, interpolation=self.interpolation, antialias=False) vid = F.center_crop(vid, self.crop_size) vid = F.convert_image_dtype(vid, torch.float) vid = F.normalize(vid, mean=self.mean, std=self.std) H, W = self.crop_size vid = vid.view(N, T, C, H, W) vid = vid.permute(0, 2, 1, 3, 4) # (N, T, C, H, W) => (N, C, T, H, W) if need_squeeze: vid = vid.squeeze(dim=0) return vid def __repr__(self) -> str: format_string = self.__class__.__name__ + "(" format_string += f"\n crop_size={self.crop_size}" format_string += f"\n resize_size={self.resize_size}" format_string += f"\n mean={self.mean}" format_string += f"\n std={self.std}" format_string += f"\n interpolation={self.interpolation}" format_string += "\n)" return format_string def describe(self) -> str: return ( "Accepts batched ``(B, T, C, H, W)`` and single ``(T, C, H, W)`` video frame ``torch.Tensor`` objects. " f"The frames are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, " f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to " f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``. Finally the output " "dimensions are permuted to ``(..., C, T, H, W)`` tensors." ) class SemanticSegmentation(nn.Module): def __init__( self, *, resize_size: Optional[int], mean: Tuple[float, ...] = (0.485, 0.456, 0.406), std: Tuple[float, ...] = (0.229, 0.224, 0.225), interpolation: InterpolationMode = InterpolationMode.BILINEAR, antialias: Optional[Union[str, bool]] = "warn", ) -> None: super().__init__() self.resize_size = [resize_size] if resize_size is not None else None self.mean = list(mean) self.std = list(std) self.interpolation = interpolation self.antialias = antialias def forward(self, img: Tensor) -> Tensor: if isinstance(self.resize_size, list): img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias) if not isinstance(img, Tensor): img = F.pil_to_tensor(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self.mean, std=self.std) return img def __repr__(self) -> str: format_string = self.__class__.__name__ + "(" format_string += f"\n resize_size={self.resize_size}" format_string += f"\n mean={self.mean}" format_string += f"\n std={self.std}" format_string += f"\n interpolation={self.interpolation}" format_string += "\n)" return format_string def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. " f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and " f"``std={self.std}``." ) class OpticalFlow(nn.Module): def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]: if not isinstance(img1, Tensor): img1 = F.pil_to_tensor(img1) if not isinstance(img2, Tensor): img2 = F.pil_to_tensor(img2) img1 = F.convert_image_dtype(img1, torch.float) img2 = F.convert_image_dtype(img2, torch.float) # map [0, 1] into [-1, 1] img1 = F.normalize(img1, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) img2 = F.normalize(img2, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) img1 = img1.contiguous() img2 = img2.contiguous() return img1, img2 def __repr__(self) -> str: return self.__class__.__name__ + "()" def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " "The images are rescaled to ``[-1.0, 1.0]``." )