import warnings from typing import Callable, Dict, List, Optional, Union from torch import nn, Tensor from torchvision.ops import misc as misc_nn_ops from torchvision.ops.feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool from .. import mobilenet, resnet from .._api import _get_enum_from_fn, WeightsEnum from .._utils import handle_legacy_interface, IntermediateLayerGetter class BackboneWithFPN(nn.Module): """ Adds a FPN on top of a model. Internally, it uses torchvision.models._utils.IntermediateLayerGetter to extract a submodel that returns the feature maps specified in return_layers. The same limitations of IntermediateLayerGetter apply here. Args: backbone (nn.Module) return_layers (Dict[name, new_name]): a dict containing the names of the modules for which the activations will be returned as the key of the dict, and the value of the dict is the name of the returned activation (which the user can specify). in_channels_list (List[int]): number of channels for each feature map that is returned, in the order they are present in the OrderedDict out_channels (int): number of channels in the FPN. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None Attributes: out_channels (int): the number of channels in the FPN """ def __init__( self, backbone: nn.Module, return_layers: Dict[str, str], in_channels_list: List[int], out_channels: int, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if extra_blocks is None: extra_blocks = LastLevelMaxPool() self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) self.fpn = FeaturePyramidNetwork( in_channels_list=in_channels_list, out_channels=out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer, ) self.out_channels = out_channels def forward(self, x: Tensor) -> Dict[str, Tensor]: x = self.body(x) x = self.fpn(x) return x @handle_legacy_interface( weights=( "pretrained", lambda kwargs: _get_enum_from_fn(resnet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"], ), ) def resnet_fpn_backbone( *, backbone_name: str, weights: Optional[WeightsEnum], norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d, trainable_layers: int = 3, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, ) -> BackboneWithFPN: """ Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone. Examples:: >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone >>> backbone = resnet_fpn_backbone('resnet50', weights=ResNet50_Weights.DEFAULT, trainable_layers=3) >>> # get some dummy image >>> x = torch.rand(1,3,64,64) >>> # compute the output >>> output = backbone(x) >>> print([(k, v.shape) for k, v in output.items()]) >>> # returns >>> [('0', torch.Size([1, 256, 16, 16])), >>> ('1', torch.Size([1, 256, 8, 8])), >>> ('2', torch.Size([1, 256, 4, 4])), >>> ('3', torch.Size([1, 256, 2, 2])), >>> ('pool', torch.Size([1, 256, 1, 1]))] Args: backbone_name (string): resnet architecture. Possible values are 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2' weights (WeightsEnum, optional): The pretrained weights for the model norm_layer (callable): it is recommended to use the default value. For details visit: (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267) trainable_layers (int): number of trainable (not frozen) layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``. By default, all layers are returned. extra_blocks (ExtraFPNBlock or None): if provided, extra operations will be performed. It is expected to take the fpn features, the original features and the names of the original features as input, and returns a new list of feature maps and their corresponding names. By default, a ``LastLevelMaxPool`` is used. """ backbone = resnet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer) return _resnet_fpn_extractor(backbone, trainable_layers, returned_layers, extra_blocks) def _resnet_fpn_extractor( backbone: resnet.ResNet, trainable_layers: int, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> BackboneWithFPN: # select layers that won't be frozen if trainable_layers < 0 or trainable_layers > 5: raise ValueError(f"Trainable layers should be in the range [0,5], got {trainable_layers}") layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers] if trainable_layers == 5: layers_to_train.append("bn1") for name, parameter in backbone.named_parameters(): if all([not name.startswith(layer) for layer in layers_to_train]): parameter.requires_grad_(False) if extra_blocks is None: extra_blocks = LastLevelMaxPool() if returned_layers is None: returned_layers = [1, 2, 3, 4] if min(returned_layers) <= 0 or max(returned_layers) >= 5: raise ValueError(f"Each returned layer should be in the range [1,4]. Got {returned_layers}") return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)} in_channels_stage2 = backbone.inplanes // 8 in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers] out_channels = 256 return BackboneWithFPN( backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer ) def _validate_trainable_layers( is_trained: bool, trainable_backbone_layers: Optional[int], max_value: int, default_value: int, ) -> int: # don't freeze any layers if pretrained model or backbone is not used if not is_trained: if trainable_backbone_layers is not None: warnings.warn( "Changing trainable_backbone_layers has no effect if " "neither pretrained nor pretrained_backbone have been set to True, " f"falling back to trainable_backbone_layers={max_value} so that all layers are trainable" ) trainable_backbone_layers = max_value # by default freeze first blocks if trainable_backbone_layers is None: trainable_backbone_layers = default_value if trainable_backbone_layers < 0 or trainable_backbone_layers > max_value: raise ValueError( f"Trainable backbone layers should be in the range [0,{max_value}], got {trainable_backbone_layers} " ) return trainable_backbone_layers @handle_legacy_interface( weights=( "pretrained", lambda kwargs: _get_enum_from_fn(mobilenet.__dict__[kwargs["backbone_name"]])["IMAGENET1K_V1"], ), ) def mobilenet_backbone( *, backbone_name: str, weights: Optional[WeightsEnum], fpn: bool, norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d, trainable_layers: int = 2, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, ) -> nn.Module: backbone = mobilenet.__dict__[backbone_name](weights=weights, norm_layer=norm_layer) return _mobilenet_extractor(backbone, fpn, trainable_layers, returned_layers, extra_blocks) def _mobilenet_extractor( backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3], fpn: bool, trainable_layers: int, returned_layers: Optional[List[int]] = None, extra_blocks: Optional[ExtraFPNBlock] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> nn.Module: backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] num_stages = len(stage_indices) # find the index of the layer from which we won't freeze if trainable_layers < 0 or trainable_layers > num_stages: raise ValueError(f"Trainable layers should be in the range [0,{num_stages}], got {trainable_layers} ") freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] for b in backbone[:freeze_before]: for parameter in b.parameters(): parameter.requires_grad_(False) out_channels = 256 if fpn: if extra_blocks is None: extra_blocks = LastLevelMaxPool() if returned_layers is None: returned_layers = [num_stages - 2, num_stages - 1] if min(returned_layers) < 0 or max(returned_layers) >= num_stages: raise ValueError(f"Each returned layer should be in the range [0,{num_stages - 1}], got {returned_layers} ") return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)} in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers] return BackboneWithFPN( backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks, norm_layer=norm_layer ) else: m = nn.Sequential( backbone, # depthwise linear combination of channels to reduce their size nn.Conv2d(backbone[-1].out_channels, out_channels, 1), ) m.out_channels = out_channels # type: ignore[assignment] return m