import io import os.path import pickle import string from collections.abc import Iterable from typing import Any, Callable, cast, List, Optional, Tuple, Union from PIL import Image from .utils import iterable_to_str, verify_str_arg from .vision import VisionDataset class LSUNClass(VisionDataset): def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None ) -> None: import lmdb super().__init__(root, transform=transform, target_transform=target_transform) self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.length = txn.stat()["entries"] cache_file = "_cache_" + "".join(c for c in root if c in string.ascii_letters) if os.path.isfile(cache_file): self.keys = pickle.load(open(cache_file, "rb")) else: with self.env.begin(write=False) as txn: self.keys = [key for key in txn.cursor().iternext(keys=True, values=False)] pickle.dump(self.keys, open(cache_file, "wb")) def __getitem__(self, index: int) -> Tuple[Any, Any]: img, target = None, None env = self.env with env.begin(write=False) as txn: imgbuf = txn.get(self.keys[index]) buf = io.BytesIO() buf.write(imgbuf) buf.seek(0) img = Image.open(buf).convert("RGB") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return self.length class LSUN(VisionDataset): """`LSUN `_ dataset. You will need to install the ``lmdb`` package to use this dataset: run ``pip install lmdb`` Args: root (string): Root directory for the database files. classes (string or list): One of {'train', 'val', 'test'} or a list of categories to load. e,g. ['bedroom_train', 'church_outdoor_train']. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__( self, root: str, classes: Union[str, List[str]] = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.classes = self._verify_classes(classes) # for each class, create an LSUNClassDataset self.dbs = [] for c in self.classes: self.dbs.append(LSUNClass(root=os.path.join(root, f"{c}_lmdb"), transform=transform)) self.indices = [] count = 0 for db in self.dbs: count += len(db) self.indices.append(count) self.length = count def _verify_classes(self, classes: Union[str, List[str]]) -> List[str]: categories = [ "bedroom", "bridge", "church_outdoor", "classroom", "conference_room", "dining_room", "kitchen", "living_room", "restaurant", "tower", ] dset_opts = ["train", "val", "test"] try: classes = cast(str, classes) verify_str_arg(classes, "classes", dset_opts) if classes == "test": classes = [classes] else: classes = [c + "_" + classes for c in categories] except ValueError: if not isinstance(classes, Iterable): msg = "Expected type str or Iterable for argument classes, but got type {}." raise ValueError(msg.format(type(classes))) classes = list(classes) msg_fmtstr_type = "Expected type str for elements in argument classes, but got type {}." for c in classes: verify_str_arg(c, custom_msg=msg_fmtstr_type.format(type(c))) c_short = c.split("_") category, dset_opt = "_".join(c_short[:-1]), c_short[-1] msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}." msg = msg_fmtstr.format(category, "LSUN class", iterable_to_str(categories)) verify_str_arg(category, valid_values=categories, custom_msg=msg) msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts)) verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg) return classes def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: Tuple (image, target) where target is the index of the target category. """ target = 0 sub = 0 for ind in self.indices: if index < ind: break target += 1 sub = ind db = self.dbs[target] index = index - sub if self.target_transform is not None: target = self.target_transform(target) img, _ = db[index] return img, target def __len__(self) -> int: return self.length def extra_repr(self) -> str: return "Classes: {classes}".format(**self.__dict__)