import os import shutil import tempfile from contextlib import contextmanager from typing import Any, Dict, Iterator, List, Optional, Tuple import torch from .folder import ImageFolder from .utils import check_integrity, extract_archive, verify_str_arg ARCHIVE_META = { "train": ("ILSVRC2012_img_train.tar", "1d675b47d978889d74fa0da5fadfb00e"), "val": ("ILSVRC2012_img_val.tar", "29b22e2961454d5413ddabcf34fc5622"), "devkit": ("ILSVRC2012_devkit_t12.tar.gz", "fa75699e90414af021442c21a62c3abf"), } META_FILE = "meta.bin" class ImageNet(ImageFolder): """`ImageNet `_ 2012 Classification Dataset. .. note:: Before using this class, it is required to download ImageNet 2012 dataset from `here `_ and place the files ``ILSVRC2012_devkit_t12.tar.gz`` and ``ILSVRC2012_img_train.tar`` or ``ILSVRC2012_img_val.tar`` based on ``split`` in the root directory. Args: root (string): Root directory of the ImageNet Dataset. split (string, optional): The dataset split, supports ``train``, or ``val``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class_name, class_index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (wordnet_id, class_index). imgs (list): List of (image path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__(self, root: str, split: str = "train", **kwargs: Any) -> None: root = self.root = os.path.expanduser(root) self.split = verify_str_arg(split, "split", ("train", "val")) self.parse_archives() wnid_to_classes = load_meta_file(self.root)[0] super().__init__(self.split_folder, **kwargs) self.root = root self.wnids = self.classes self.wnid_to_idx = self.class_to_idx self.classes = [wnid_to_classes[wnid] for wnid in self.wnids] self.class_to_idx = {cls: idx for idx, clss in enumerate(self.classes) for cls in clss} def parse_archives(self) -> None: if not check_integrity(os.path.join(self.root, META_FILE)): parse_devkit_archive(self.root) if not os.path.isdir(self.split_folder): if self.split == "train": parse_train_archive(self.root) elif self.split == "val": parse_val_archive(self.root) @property def split_folder(self) -> str: return os.path.join(self.root, self.split) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__) def load_meta_file(root: str, file: Optional[str] = None) -> Tuple[Dict[str, str], List[str]]: if file is None: file = META_FILE file = os.path.join(root, file) if check_integrity(file): return torch.load(file) else: msg = ( "The meta file {} is not present in the root directory or is corrupted. " "This file is automatically created by the ImageNet dataset." ) raise RuntimeError(msg.format(file, root)) def _verify_archive(root: str, file: str, md5: str) -> None: if not check_integrity(os.path.join(root, file), md5): msg = ( "The archive {} is not present in the root directory or is corrupted. " "You need to download it externally and place it in {}." ) raise RuntimeError(msg.format(file, root)) def parse_devkit_archive(root: str, file: Optional[str] = None) -> None: """Parse the devkit archive of the ImageNet2012 classification dataset and save the meta information in a binary file. Args: root (str): Root directory containing the devkit archive file (str, optional): Name of devkit archive. Defaults to 'ILSVRC2012_devkit_t12.tar.gz' """ import scipy.io as sio def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]: metafile = os.path.join(devkit_root, "data", "meta.mat") meta = sio.loadmat(metafile, squeeze_me=True)["synsets"] nums_children = list(zip(*meta))[4] meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0] idcs, wnids, classes = list(zip(*meta))[:3] classes = [tuple(clss.split(", ")) for clss in classes] idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)} wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)} return idx_to_wnid, wnid_to_classes def parse_val_groundtruth_txt(devkit_root: str) -> List[int]: file = os.path.join(devkit_root, "data", "ILSVRC2012_validation_ground_truth.txt") with open(file) as txtfh: val_idcs = txtfh.readlines() return [int(val_idx) for val_idx in val_idcs] @contextmanager def get_tmp_dir() -> Iterator[str]: tmp_dir = tempfile.mkdtemp() try: yield tmp_dir finally: shutil.rmtree(tmp_dir) archive_meta = ARCHIVE_META["devkit"] if file is None: file = archive_meta[0] md5 = archive_meta[1] _verify_archive(root, file, md5) with get_tmp_dir() as tmp_dir: extract_archive(os.path.join(root, file), tmp_dir) devkit_root = os.path.join(tmp_dir, "ILSVRC2012_devkit_t12") idx_to_wnid, wnid_to_classes = parse_meta_mat(devkit_root) val_idcs = parse_val_groundtruth_txt(devkit_root) val_wnids = [idx_to_wnid[idx] for idx in val_idcs] torch.save((wnid_to_classes, val_wnids), os.path.join(root, META_FILE)) def parse_train_archive(root: str, file: Optional[str] = None, folder: str = "train") -> None: """Parse the train images archive of the ImageNet2012 classification dataset and prepare it for usage with the ImageNet dataset. Args: root (str): Root directory containing the train images archive file (str, optional): Name of train images archive. Defaults to 'ILSVRC2012_img_train.tar' folder (str, optional): Optional name for train images folder. Defaults to 'train' """ archive_meta = ARCHIVE_META["train"] if file is None: file = archive_meta[0] md5 = archive_meta[1] _verify_archive(root, file, md5) train_root = os.path.join(root, folder) extract_archive(os.path.join(root, file), train_root) archives = [os.path.join(train_root, archive) for archive in os.listdir(train_root)] for archive in archives: extract_archive(archive, os.path.splitext(archive)[0], remove_finished=True) def parse_val_archive( root: str, file: Optional[str] = None, wnids: Optional[List[str]] = None, folder: str = "val" ) -> None: """Parse the validation images archive of the ImageNet2012 classification dataset and prepare it for usage with the ImageNet dataset. Args: root (str): Root directory containing the validation images archive file (str, optional): Name of validation images archive. Defaults to 'ILSVRC2012_img_val.tar' wnids (list, optional): List of WordNet IDs of the validation images. If None is given, the IDs are loaded from the meta file in the root directory folder (str, optional): Optional name for validation images folder. Defaults to 'val' """ archive_meta = ARCHIVE_META["val"] if file is None: file = archive_meta[0] md5 = archive_meta[1] if wnids is None: wnids = load_meta_file(root)[1] _verify_archive(root, file, md5) val_root = os.path.join(root, folder) extract_archive(os.path.join(root, file), val_root) images = sorted(os.path.join(val_root, image) for image in os.listdir(val_root)) for wnid in set(wnids): os.mkdir(os.path.join(val_root, wnid)) for wnid, img_file in zip(wnids, images): shutil.move(img_file, os.path.join(val_root, wnid, os.path.basename(img_file)))