import os import torch import torchvision.transforms as transforms from loss import TripletMarginLoss from model import EmbeddingNet from sampler import PKSampler from torch.optim import Adam from torch.utils.data import DataLoader from torchvision.datasets import FashionMNIST def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq): model.train() running_loss = 0 running_frac_pos_triplets = 0 for i, data in enumerate(data_loader): optimizer.zero_grad() samples, targets = data[0].to(device), data[1].to(device) embeddings = model(samples) loss, frac_pos_triplets = criterion(embeddings, targets) loss.backward() optimizer.step() running_loss += loss.item() running_frac_pos_triplets += float(frac_pos_triplets) if i % print_freq == print_freq - 1: i += 1 avg_loss = running_loss / print_freq avg_trip = 100.0 * running_frac_pos_triplets / print_freq print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%") running_loss = 0 running_frac_pos_triplets = 0 def find_best_threshold(dists, targets, device): best_thresh = 0.01 best_correct = 0 for thresh in torch.arange(0.0, 1.51, 0.01): predictions = dists <= thresh.to(device) correct = torch.sum(predictions == targets.to(device)).item() if correct > best_correct: best_thresh = thresh best_correct = correct accuracy = 100.0 * best_correct / dists.size(0) return best_thresh, accuracy @torch.inference_mode() def evaluate(model, loader, device): model.eval() embeds, labels = [], [] dists, targets = None, None for data in loader: samples, _labels = data[0].to(device), data[1] out = model(samples) embeds.append(out) labels.append(_labels) embeds = torch.cat(embeds, dim=0) labels = torch.cat(labels, dim=0) dists = torch.cdist(embeds, embeds) labels = labels.unsqueeze(0) targets = labels == labels.t() mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0)) dists = dists[mask == 1] targets = targets[mask == 1] threshold, accuracy = find_best_threshold(dists, targets, device) print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}") def save(model, epoch, save_dir, file_name): file_name = "epoch_" + str(epoch) + "__" + file_name save_path = os.path.join(save_dir, file_name) torch.save(model.state_dict(), save_path) def main(args): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.use_deterministic_algorithms: torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True p = args.labels_per_batch k = args.samples_per_label batch_size = p * k model = EmbeddingNet() if args.resume: model.load_state_dict(torch.load(args.resume)) model.to(device) criterion = TripletMarginLoss(margin=args.margin) optimizer = Adam(model.parameters(), lr=args.lr) transform = transforms.Compose( [ transforms.Lambda(lambda image: image.convert("RGB")), transforms.Resize((224, 224)), transforms.PILToTensor(), transforms.ConvertImageDtype(torch.float), ] ) # Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can # be replaced with any classification dataset. train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True) test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True) # targets is a list where the i_th element corresponds to the label of i_th dataset element. # This is required for PKSampler to randomly sample from exactly p classes. You will need to # construct targets while building your dataset. Some datasets (such as ImageFolder) have a # targets attribute with the same format. targets = train_dataset.targets.tolist() train_loader = DataLoader( train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers ) test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers) if args.test_only: # We disable the cudnn benchmarking because it can noticeably affect the accuracy torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True evaluate(model, test_loader, device) return for epoch in range(1, args.epochs + 1): print("Training...") train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq) print("Evaluating...") evaluate(model, test_loader, device) print("Saving...") save(model, epoch, args.save_dir, "ckpt.pth") def parse_args(): import argparse parser = argparse.ArgumentParser(description="PyTorch Embedding Learning") parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path") parser.add_argument( "-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch" ) parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch") parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation") parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run") parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers") parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate") parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin") parser.add_argument("--print-freq", default=20, type=int, help="print frequency") parser.add_argument("--save-dir", default=".", type=str, help="Model save directory") parser.add_argument("--resume", default="", type=str, help="path of checkpoint") parser.add_argument( "--test-only", dest="test_only", help="Only test the model", action="store_true", ) parser.add_argument( "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only." ) return parser.parse_args() if __name__ == "__main__": args = parse_args() main(args)