import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.transforms.v2 import torchvision.tv_tensors import v2_extras return torchvision.transforms.v2, torchvision.tv_tensors, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, tv_tensors, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tv_tensor": transforms.append(T.ToImage()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill={tv_tensors.Mask: 255, "others": 0})] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = tv_tensors.Image if backend == "tv_tensor" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, tv_tensors.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ToDtype(torch.float, scale=True)] transforms += [T.Normalize(mean=mean, std=std)] if use_v2: transforms += [T.ToPureTensor()] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "tv_tensor": transforms += [T.ToImage()] elif backend != "pil": raise ValueError(f"backend can be 'tv_tensor', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImage() if use_v2 else T.PILToTensor()] transforms += [ T.ToDtype(torch.float, scale=True), T.Normalize(mean=mean, std=std), ] if use_v2: transforms += [T.ToPureTensor()] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)