# Image classification reference training scripts This folder contains reference training scripts for image classification. They serve as a log of how to train specific models, as provide baseline training and evaluation scripts to quickly bootstrap research. Except otherwise noted, all models have been trained on 8x V100 GPUs with the following parameters: | Parameter | value | | ------------------------ | ------ | | `--batch_size` | `32` | | `--epochs` | `90` | | `--lr` | `0.1` | | `--momentum` | `0.9` | | `--wd`, `--weight-decay` | `1e-4` | | `--lr-step-size` | `30` | | `--lr-gamma` | `0.1` | ### AlexNet and VGG Since `AlexNet` and the original `VGG` architectures do not include batch normalization, the default initial learning rate `--lr 0.1` is too high. ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --lr 1e-2 ``` Here `$MODEL` is one of `alexnet`, `vgg11`, `vgg13`, `vgg16` or `vgg19`. Note that `vgg11_bn`, `vgg13_bn`, `vgg16_bn`, and `vgg19_bn` include batch normalization and thus are trained with the default parameters. ### GoogLeNet The weights of the GoogLeNet model are ported from the original paper rather than trained from scratch. ### Inception V3 The weights of the Inception V3 model are ported from the original paper rather than trained from scratch. Since it expects tensors with a size of N x 3 x 299 x 299, to validate the model use the following command: ``` torchrun --nproc_per_node=8 train.py --model inception_v3\ --test-only --weights Inception_V3_Weights.IMAGENET1K_V1 ``` ### ResNet ``` torchrun --nproc_per_node=8 train.py --model $MODEL ``` Here `$MODEL` is one of `resnet18`, `resnet34`, `resnet50`, `resnet101` or `resnet152`. ### ResNext ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 100 ``` Here `$MODEL` is one of `resnext50_32x4d` or `resnext101_32x8d`. Note that the above command corresponds to a single node with 8 GPUs. If you use a different number of GPUs and/or a different batch size, then the learning rate should be scaled accordingly. For example, the pretrained model provided by `torchvision` was trained on 8 nodes, each with 8 GPUs (for a total of 64 GPUs), with `--batch_size 16` and `--lr 0.4`, instead of the current defaults which are respectively batch_size=32 and lr=0.1 ### MobileNetV2 ``` torchrun --nproc_per_node=8 train.py\ --model mobilenet_v2 --epochs 300 --lr 0.045 --wd 0.00004\ --lr-step-size 1 --lr-gamma 0.98 ``` ### MobileNetV3 Large & Small ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 600 --opt rmsprop --batch-size 128 --lr 0.064\ --wd 0.00001 --lr-step-size 2 --lr-gamma 0.973 --auto-augment imagenet --random-erase 0.2 ``` Here `$MODEL` is one of `mobilenet_v3_large` or `mobilenet_v3_small`. Then we averaged the parameters of the last 3 checkpoints that improved the Acc@1. See [#3182](https://github.com/pytorch/vision/pull/3182) and [#3354](https://github.com/pytorch/vision/pull/3354) for details. ### EfficientNet-V1 The weights of the B0-B4 variants are ported from Ross Wightman's [timm repo](https://github.com/rwightman/pytorch-image-models/blob/01cb46a9a50e3ba4be167965b5764e9702f09b30/timm/models/efficientnet.py#L95-L108). The weights of the B5-B7 variants are ported from Luke Melas' [EfficientNet-PyTorch repo](https://github.com/lukemelas/EfficientNet-PyTorch/blob/1039e009545d9329ea026c9f7541341439712b96/efficientnet_pytorch/utils.py#L562-L564). All models were trained using Bicubic interpolation and each have custom crop and resize sizes. To validate the models use the following commands: ``` torchrun --nproc_per_node=8 train.py --model efficientnet_b0 --test-only --weights EfficientNet_B0_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b1 --test-only --weights EfficientNet_B1_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b2 --test-only --weights EfficientNet_B2_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b3 --test-only --weights EfficientNet_B3_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b4 --test-only --weights EfficientNet_B4_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b5 --test-only --weights EfficientNet_B5_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b6 --test-only --weights EfficientNet_B6_Weights.IMAGENET1K_V1 torchrun --nproc_per_node=8 train.py --model efficientnet_b7 --test-only --weights EfficientNet_B7_Weights.IMAGENET1K_V1 ``` ### EfficientNet-V2 ``` torchrun --nproc_per_node=8 train.py \ --model $MODEL --batch-size 128 --lr 0.5 --lr-scheduler cosineannealinglr \ --lr-warmup-epochs 5 --lr-warmup-method linear --auto-augment ta_wide --epochs 600 --random-erase 0.1 \ --label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --weight-decay 0.00002 --norm-weight-decay 0.0 \ --train-crop-size $TRAIN_SIZE --model-ema --val-crop-size $EVAL_SIZE --val-resize-size $EVAL_SIZE \ --ra-sampler --ra-reps 4 ``` Here `$MODEL` is one of `efficientnet_v2_s` and `efficientnet_v2_m`. Note that the Small variant had a `$TRAIN_SIZE` of `300` and a `$EVAL_SIZE` of `384`, while the Medium `384` and `480` respectively. Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 4 nodes, each with 8 GPUs (for a total of 32 GPUs), and `--batch_size 32`. The weights of the Large variant are ported from the original paper rather than trained from scratch. See the `EfficientNet_V2_L_Weights` entry for their exact preprocessing transforms. ### RegNet #### Small models ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 100 --batch-size 128 --wd 0.00005 --lr=0.8\ --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\ --lr-warmup-epochs=5 --lr-warmup-decay=0.1 ``` Here `$MODEL` is one of `regnet_x_400mf`, `regnet_x_800mf`, `regnet_x_1_6gf`, `regnet_y_400mf`, `regnet_y_800mf` and `regnet_y_1_6gf`. Please note we used learning rate 0.4 for `regent_y_400mf` to get the same Acc@1 as [the paper)(https://arxiv.org/abs/2003.13678). #### Medium models ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 100 --batch-size 64 --wd 0.00005 --lr=0.4\ --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\ --lr-warmup-epochs=5 --lr-warmup-decay=0.1 ``` Here `$MODEL` is one of `regnet_x_3_2gf`, `regnet_x_8gf`, `regnet_x_16gf`, `regnet_y_3_2gf` and `regnet_y_8gf`. #### Large models ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 100 --batch-size 32 --wd 0.00005 --lr=0.2\ --lr-scheduler=cosineannealinglr --lr-warmup-method=linear\ --lr-warmup-epochs=5 --lr-warmup-decay=0.1 ``` Here `$MODEL` is one of `regnet_x_32gf`, `regnet_y_16gf` and `regnet_y_32gf`. ### Vision Transformer #### vit_b_16 ``` torchrun --nproc_per_node=8 train.py\ --model vit_b_16 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\ --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\ --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\ --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema ``` Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 8 nodes, each with 8 GPUs (for a total of 64 GPUs), and `--batch_size 64`. #### vit_b_32 ``` torchrun --nproc_per_node=8 train.py\ --model vit_b_32 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\ --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\ --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment imagenet\ --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema ``` Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs), and `--batch_size 256`. #### vit_l_16 ``` torchrun --nproc_per_node=8 train.py\ --model vit_l_16 --epochs 600 --batch-size 128 --lr 0.5 --lr-scheduler cosineannealinglr\ --lr-warmup-method linear --lr-warmup-epochs 5 --label-smoothing 0.1 --mixup-alpha 0.2\ --auto-augment ta_wide --random-erase 0.1 --weight-decay 0.00002 --norm-weight-decay 0.0\ --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema --val-resize-size 232 ``` Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs), and `--batch_size 64`. #### vit_l_32 ``` torchrun --nproc_per_node=8 train.py\ --model vit_l_32 --epochs 300 --batch-size 512 --opt adamw --lr 0.003 --wd 0.3\ --lr-scheduler cosineannealinglr --lr-warmup-method linear --lr-warmup-epochs 30\ --lr-warmup-decay 0.033 --amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra\ --clip-grad-norm 1 --ra-sampler --cutmix-alpha 1.0 --model-ema ``` Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 8 nodes, each with 8 GPUs (for a total of 64 GPUs), and `--batch_size 64`. ### ConvNeXt ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --batch-size 128 --opt adamw --lr 1e-3 --lr-scheduler cosineannealinglr \ --lr-warmup-epochs 5 --lr-warmup-method linear --auto-augment ta_wide --epochs 600 --random-erase 0.1 \ --label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --weight-decay 0.05 --norm-weight-decay 0.0 \ --train-crop-size 176 --model-ema --val-resize-size 232 --ra-sampler --ra-reps 4 ``` Here `$MODEL` is one of `convnext_tiny`, `convnext_small`, `convnext_base` and `convnext_large`. Note that each variant had its `--val-resize-size` optimized in a post-training step, see their `Weights` entry for their exact value. Note that the above command corresponds to training on a single node with 8 GPUs. For generatring the pre-trained weights, we trained with 2 nodes, each with 8 GPUs (for a total of 16 GPUs), and `--batch_size 64`. ### SwinTransformer ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 300 --batch-size 128 --opt adamw --lr 0.001 --weight-decay 0.05 --norm-weight-decay 0.0 --bias-weight-decay 0.0 --transformer-embedding-decay 0.0 --lr-scheduler cosineannealinglr --lr-min 0.00001 --lr-warmup-method linear --lr-warmup-epochs 20 --lr-warmup-decay 0.01 --amp --label-smoothing 0.1 --mixup-alpha 0.8 --clip-grad-norm 5.0 --cutmix-alpha 1.0 --random-erase 0.25 --interpolation bicubic --auto-augment ta_wide --model-ema --ra-sampler --ra-reps 4 --val-resize-size 224 ``` Here `$MODEL` is one of `swin_t`, `swin_s` or `swin_b`. Note that `--val-resize-size` was optimized in a post-training step, see their `Weights` entry for the exact value. ### SwinTransformer V2 ``` torchrun --nproc_per_node=8 train.py\ --model $MODEL --epochs 300 --batch-size 128 --opt adamw --lr 0.001 --weight-decay 0.05 --norm-weight-decay 0.0 --bias-weight-decay 0.0 --transformer-embedding-decay 0.0 --lr-scheduler cosineannealinglr --lr-min 0.00001 --lr-warmup-method linear --lr-warmup-epochs 20 --lr-warmup-decay 0.01 --amp --label-smoothing 0.1 --mixup-alpha 0.8 --clip-grad-norm 5.0 --cutmix-alpha 1.0 --random-erase 0.25 --interpolation bicubic --auto-augment ta_wide --model-ema --ra-sampler --ra-reps 4 --val-resize-size 256 --val-crop-size 256 --train-crop-size 256 ``` Here `$MODEL` is one of `swin_v2_t`, `swin_v2_s` or `swin_v2_b`. Note that `--val-resize-size` was optimized in a post-training step, see their `Weights` entry for the exact value. ### MaxViT ``` torchrun --nproc_per_node=8 --n_nodes=4 train.py\ --model $MODEL --epochs 400 --batch-size 128 --opt adamw --lr 3e-3 --weight-decay 0.05 --lr-scheduler cosineannealinglr --lr-min 1e-5 --lr-warmup-method linear --lr-warmup-epochs 32 --label-smoothing 0.1 --mixup-alpha 0.8 --clip-grad-norm 1.0 --interpolation bicubic --auto-augment ta_wide --policy-magnitude 15 --model-ema --val-resize-size 224\ --val-crop-size 224 --train-crop-size 224 --amp --model-ema-steps 32 --transformer-embedding-decay 0 --sync-bn ``` Here `$MODEL` is `maxvit_t`. Note that `--val-resize-size` was not optimized in a post-training step. ### ShuffleNet V2 ``` torchrun --nproc_per_node=8 train.py \ --batch-size=128 \ --lr=0.5 --lr-scheduler=cosineannealinglr --lr-warmup-epochs=5 --lr-warmup-method=linear \ --auto-augment=ta_wide --epochs=600 --random-erase=0.1 --weight-decay=0.00002 \ --norm-weight-decay=0.0 --label-smoothing=0.1 --mixup-alpha=0.2 --cutmix-alpha=1.0 \ --train-crop-size=176 --model-ema --val-resize-size=232 --ra-sampler --ra-reps=4 ``` Here `$MODEL` is either `shufflenet_v2_x1_5` or `shufflenet_v2_x2_0`. The models `shufflenet_v2_x0_5` and `shufflenet_v2_x1_0` were contributed by the community. See [PR-849](https://github.com/pytorch/vision/pull/849#issuecomment-483391686) for details. ## Mixed precision training Automatic Mixed Precision (AMP) training on GPU for Pytorch can be enabled with the [torch.cuda.amp](https://pytorch.org/docs/stable/amp.html?highlight=amp#module-torch.cuda.amp). Mixed precision training makes use of both FP32 and FP16 precisions where appropriate. FP16 operations can leverage the Tensor cores on NVIDIA GPUs (Volta, Turing or newer architectures) for improved throughput, generally without loss in model accuracy. Mixed precision training also often allows larger batch sizes. GPU automatic mixed precision training for Pytorch Vision can be enabled via the flag value `--amp=True`. ``` torchrun --nproc_per_node=8 train.py\ --model resnext50_32x4d --epochs 100 --amp ``` ## Quantized ### Post training quantized models For all post training quantized models, the settings are: 1. num_calibration_batches: 32 2. num_workers: 16 3. batch_size: 32 4. eval_batch_size: 128 5. backend: 'fbgemm' ``` python train_quantization.py --device='cpu' --post-training-quantize --backend='fbgemm' --model='$MODEL' ``` Here `$MODEL` is one of `googlenet`, `inception_v3`, `resnet18`, `resnet50`, `resnext101_32x8d`, `shufflenet_v2_x0_5` and `shufflenet_v2_x1_0`. ### Quantized ShuffleNet V2 Here are commands that we use to quantize the `shufflenet_v2_x1_5` and `shufflenet_v2_x2_0` models. ``` # For shufflenet_v2_x1_5 python train_quantization.py --device='cpu' --post-training-quantize --backend='fbgemm' \ --model=shufflenet_v2_x1_5 --weights="ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1" \ --train-crop-size 176 --val-resize-size 232 --data-path /datasets01_ontap/imagenet_full_size/061417/ # For shufflenet_v2_x2_0 python train_quantization.py --device='cpu' --post-training-quantize --backend='fbgemm' \ --model=shufflenet_v2_x2_0 --weights="ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1" \ --train-crop-size 176 --val-resize-size 232 --data-path /datasets01_ontap/imagenet_full_size/061417/ ``` ### QAT MobileNetV2 For Mobilenet-v2, the model was trained with quantization aware training, the settings used are: 1. num_workers: 16 2. batch_size: 32 3. eval_batch_size: 128 4. backend: 'qnnpack' 5. learning-rate: 0.0001 6. num_epochs: 90 7. num_observer_update_epochs:4 8. num_batch_norm_update_epochs:3 9. momentum: 0.9 10. lr_step_size:30 11. lr_gamma: 0.1 12. weight-decay: 0.0001 ``` torchrun --nproc_per_node=8 train_quantization.py --model='mobilenet_v2' ``` Training converges at about 10 epochs. ### QAT MobileNetV3 For Mobilenet-v3 Large, the model was trained with quantization aware training, the settings used are: 1. num_workers: 16 2. batch_size: 32 3. eval_batch_size: 128 4. backend: 'qnnpack' 5. learning-rate: 0.001 6. num_epochs: 90 7. num_observer_update_epochs:4 8. num_batch_norm_update_epochs:3 9. momentum: 0.9 10. lr_step_size:30 11. lr_gamma: 0.1 12. weight-decay: 0.00001 ``` torchrun --nproc_per_node=8 train_quantization.py --model='mobilenet_v3_large' \ --wd 0.00001 --lr 0.001 ``` For post training quant, device is set to CPU. For training, the device is set to CUDA. ### Command to evaluate quantized models using the pre-trained weights: ``` python train_quantization.py --device='cpu' --test-only --backend='' --model='' ``` For inception_v3 you need to pass the following extra parameters: ``` --val-resize-size 342 --val-crop-size 299 --train-crop-size 299 ```