# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class SegmentationPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a segmentation model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.segment import SegmentationPredictor args = dict(model='yolov8n-seg.pt', source=ASSETS) predictor = SegmentationPredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'segment' def postprocess(self, preds, img, orig_imgs): p = ops.non_max_suppression(preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), classes=self.args.classes) results = [] is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported for i, pred in enumerate(p): orig_img = orig_imgs[i] if is_list else orig_imgs img_path = self.batch[0][i] if not len(pred): # save empty boxes masks = None elif self.args.retina_masks: if is_list: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC if is_list: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) return results