# from PIL import Image # from ultralytics import YOLO # import time # # 加载预训练的YOLOv8n模型 # model = YOLO('/home/nvidia/newdisk/hkpc/ultralytics-main/best.pt') # time.sleep(5) # # 在'bus.jpg'上运行推理 # start_time = time.time() # model.predict('data/1.jpg', save=False, imgsz=320, conf=0.5) # # results = model('data/1.jpg') # 结果列表 # # # 展示结果 # # for r in results: # # print(r.boxes.data) # # print(r.names) # #print(r.probs) # 打印包含检测到的类别概率的Probs对象 # # im_array = r.plot() # 绘制包含预测结果的BGR numpy数组 # # im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像 # # im.show() # 显示图像 # # im.save('results.jpg') # 保存图像 # # 记录结束时间 # end_time = time.time() # # 计算代码运行时间 # elapsed_time = end_time - start_time # print(f"代码运行时间: {elapsed_time} 秒") import cv2 from ultralytics import YOLO import time # Load the YOLOv8 model model = YOLO('/home/nvidia/newdisk/hkpc/ultralytics-main/best.pt') # Loop through the video frames while 1: start_time = time.time() # Run YOLOv8 inference on the frame results = model('data/1.jpg') # Visualize the results on the frame # annotated_frame = results[0].plot() # # Display the annotated frame # cv2.imshow("YOLOv8 Inference", annotated_frame) # # Break the loop if 'q' is pressed # if cv2.waitKey(1) & 0xFF == ord("q"): # break end_time = time.time() elapsed_time = end_time - start_time print(f"代码运行时间: {elapsed_time} 秒") time.sleep(0.5) # cv2.destroyAllWindows()