import argparse import os import pathlib from collections import defaultdict from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Sequence, TextIO, Tuple, Union import yaml # Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices. from torchgen import dest from torchgen.api import cpp as aten_cpp from torchgen.api.types import CppSignature, CppSignatureGroup, CType, NamedCType from torchgen.context import method_with_native_function, with_native_function_and_index from torchgen.executorch.api import et_cpp from torchgen.executorch.api.custom_ops import ( ComputeNativeFunctionStub, gen_custom_ops_registration, ) from torchgen.executorch.api.types import ExecutorchCppSignature from torchgen.executorch.api.unboxing import Unboxing from torchgen.gen import ( get_custom_build_selector, get_native_function_declarations, get_native_function_schema_registrations, LineLoader, parse_native_yaml, ParsedYaml, ) from torchgen.model import ( BackendIndex, BackendMetadata, DispatchKey, is_cuda_dispatch_key, Location, NativeFunction, NativeFunctionsGroup, OperatorName, Variant, ) from torchgen.selective_build.selector import SelectiveBuilder from torchgen.utils import ( context, FileManager, make_file_manager, mapMaybe, NamespaceHelper, ) def static_dispatch( sig: Union[CppSignature, ExecutorchCppSignature], f: NativeFunction, backend_indices: List[BackendIndex], ) -> str: """ For a given `NativeFunction`, find out the corresponding native function and dispatch to it. If zero or more than one native function exists, error out. A simplified version of register_dispatch_key.py Arguments: sig: A CppSignature for this native function we want to use. f: NativeFunction to generate static dispatch. backend_indices: All available backends. Return: C++ code to call backend-specific functions, e.g., "return at::native::add(self, other, scale);" """ if len(backend_indices) == 0 or f.manual_kernel_registration: return "" backends = [b for b in backend_indices if b.has_kernel(f)] static_block = None if len(backends) == 1: backend_metadata = backends[0].get_kernel(f) if backend_metadata: args = ", ".join(a.name for a in sig.arguments()) # Here we are assuming there's no difference between CppSignature and NativeSignature for Executorch. static_block = f"return ::{backend_metadata.cpp_namespace}::{backend_metadata.kernel}({args});" else: static_block = f""" ET_ASSERT_UNREACHABLE_MSG("The number of native function(s) binding to {f.func.name} is {len(backends)}."); """ return f""" // {f.namespace}::{f.func} TORCH_API inline {sig.decl()} {{ {static_block} }} """ # Generates Functions.h, which provides the functional public C++ API, # and the scaffolding to call into the dispatcher from these functions. @dataclass(frozen=True) class ComputeFunction: static_dispatch_backend_indices: List[BackendIndex] selector: SelectiveBuilder use_aten_lib: bool is_custom_op: Callable[[NativeFunction], bool] @method_with_native_function def __call__(self, f: NativeFunction) -> Optional[str]: if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"): return None if Variant.function not in f.variants: return None sig: Union[CppSignature, ExecutorchCppSignature] = ( CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ).most_faithful_signature() if self.use_aten_lib else ExecutorchCppSignature.from_native_function(f) ) if self.use_aten_lib and not self.is_custom_op(f): comma = ", " return f""" // {f.namespace}::{f.func} TORCH_API inline {sig.decl()} {{ return at::{sig.name()}({comma.join(e.name for e in sig.arguments())}); }} """ else: return static_dispatch( sig, f, backend_indices=self.static_dispatch_backend_indices, ) # Generates RegisterCodegenUnboxedKernels.cpp. @dataclass(frozen=True) class ComputeCodegenUnboxedKernels: selector: SelectiveBuilder use_aten_lib: bool @method_with_native_function def __call__(self, f: NativeFunction) -> str: if not self.selector.is_root_operator(f"{f.namespace}::{f.func.name}"): return "" sig: Union[CppSignature, ExecutorchCppSignature] argument_type_gen: Callable[..., NamedCType] return_type_gen: Callable[..., CType] if self.use_aten_lib: sig = CppSignatureGroup.from_native_function( f, method=False, fallback_binding=f.manual_cpp_binding ).most_faithful_signature() argument_type_gen = aten_cpp.argumenttype_type return_type_gen = aten_cpp.returns_type else: sig = ExecutorchCppSignature.from_native_function(f) argument_type_gen = et_cpp.argumenttype_type return_type_gen = et_cpp.returns_type # parse arguments into C++ code binding_list, code_list = Unboxing( argument_type_gen=argument_type_gen ).convert_arguments(sig.arguments()) # for each C++ argument, generate the conversion code code_connector = "\n\t" arg_connector = ", " args_str = f"{arg_connector.join(e.name for e in binding_list)}" if len(f.func.returns) == 0: if len(f.func.arguments.out) == 0: raise Exception( f"Can't handle native function {f.func} with no returns and no out yet." ) out = f.func.arguments.out[0] return_assignment = f"""stack[{len(binding_list)}] = &{out.name};""" ret_prefix = "" else: if len(f.func.arguments.out) == 0: return_assignment = ( f"""*stack[{len(binding_list)}] = EValue(result_);""" ) ret_prefix = return_type_gen(f.func.returns).cpp_type() + " result_ = " else: return_assignment = "" ret_prefix = "" return f""" Operator( "{f.namespace}::{f.func.name}", [](EValue** stack) {{ {code_connector.join(code_list)} EXECUTORCH_SCOPE_PROF("native_call_{f.func.name}"); {ret_prefix}torch::executor::{f.namespace}::{sig.name()}({args_str}); {return_assignment} }} ), """ def gen_unboxing( *, native_functions: Sequence[NativeFunction], cpu_fm: FileManager, selector: SelectiveBuilder, use_aten_lib: bool, ) -> None: def key_func(fn: Union[NativeFunction, NativeFunctionsGroup]) -> str: return fn.root_name cpu_fm.write_sharded( "RegisterCodegenUnboxedKernels.cpp", native_functions, key_fn=key_func, env_callable=lambda fn: { "unboxed_ops": [ComputeCodegenUnboxedKernels(selector, use_aten_lib)(fn)], }, num_shards=1, sharded_keys={"unboxed_ops"}, ) @with_native_function_and_index def compute_native_function_declaration( g: Union[NativeFunctionsGroup, NativeFunction], backend_index: BackendIndex ) -> List[str]: assert isinstance(g, NativeFunction) sig = ExecutorchCppSignature.from_native_function(f=g) metadata = backend_index.get_kernel(g) if metadata is None: return [] prefix = "static" if backend_index.external else "TORCH_API" return [f"{prefix} {sig.decl(name=metadata.kernel)};"] def gen_functions_declarations( *, native_functions: Sequence[NativeFunction], static_dispatch_idx: List[BackendIndex], selector: SelectiveBuilder, use_aten_lib: bool, custom_ops_native_functions: Optional[Sequence[NativeFunction]] = None, ) -> str: """ Generates namespace separated C++ function API inline declaration/definitions. Native functions are grouped by namespaces and the generated code is wrapped inside namespace blocks. E.g., for `custom_1::foo.out` in yaml file we will generate a C++ API as a symbol in `torch::executor::custom_1::foo_out`. This way we avoid symbol conflict when the other `custom_2::foo.out` is available. """ ns_grouped_functions = defaultdict(list) for native_function in native_functions: ns_grouped_functions[native_function.namespace].append(native_function) functions_declarations = "" newline = "\n" for namespace in ns_grouped_functions: ns_helper = NamespaceHelper( namespace_str=namespace, entity_name="", max_level=3, ) declarations = list( mapMaybe( ComputeFunction( static_dispatch_backend_indices=static_dispatch_idx, selector=selector, use_aten_lib=use_aten_lib, is_custom_op=lambda f: custom_ops_native_functions is not None and f in custom_ops_native_functions, ), ns_grouped_functions[namespace], ) ) functions_declarations += f""" {ns_helper.prologue} {newline.join(declarations)} {ns_helper.epilogue} """ return functions_declarations def gen_headers( *, native_functions: Sequence[NativeFunction], custom_ops_native_functions: Sequence[NativeFunction], static_dispatch_idx: List[BackendIndex], selector: SelectiveBuilder, backend_indices: Dict[DispatchKey, BackendIndex], cpu_fm: FileManager, use_aten_lib: bool, ) -> None: aten_headers = ["#include "] if custom_ops_native_functions: cpu_fm.write_with_template( "CustomOpsNativeFunctions.h", "NativeFunctions.h", lambda: { "nativeFunctions_declarations": get_native_function_declarations( grouped_native_functions=custom_ops_native_functions, backend_indices=backend_indices, native_function_decl_gen=dest.compute_native_function_declaration, ), }, ) aten_headers.append('#include "CustomOpsNativeFunctions.h"') cpu_fm.write( "Functions.h", lambda: { "static_dispatch_extra_headers": aten_headers if use_aten_lib else ['#include "NativeFunctions.h"'], "Functions_declarations": gen_functions_declarations( native_functions=native_functions, static_dispatch_idx=static_dispatch_idx, selector=selector, use_aten_lib=use_aten_lib, custom_ops_native_functions=custom_ops_native_functions, ), }, ) cpu_fm.write( "NativeFunctions.h", lambda: { "nativeFunctions_declarations": get_native_function_declarations( grouped_native_functions=native_functions, backend_indices=backend_indices, native_function_decl_gen=dest.compute_native_function_declaration if use_aten_lib else compute_native_function_declaration, ), }, ) def gen_custom_ops( *, native_functions: Sequence[NativeFunction], selector: SelectiveBuilder, backend_indices: Dict[DispatchKey, BackendIndex], cpu_fm: FileManager, rocm: bool, ) -> None: dispatch_key = DispatchKey.CPU backend_index = backend_indices[dispatch_key] ( anonymous_definition, static_init_dispatch_registrations, ) = gen_custom_ops_registration( native_functions=native_functions, selector=selector, backend_index=backend_index, rocm=rocm, ) cpu_fm.write_with_template( f"Register{dispatch_key}CustomOps.cpp", "RegisterDispatchKeyCustomOps.cpp", lambda: { "ops_headers": '#include "CustomOpsNativeFunctions.h"', "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": anonymous_definition, "static_init_dispatch_registrations": static_init_dispatch_registrations, }, ) cpu_fm.write_with_template( f"Register{dispatch_key}Stub.cpp", "RegisterDispatchKeyCustomOps.cpp", lambda: { "ops_headers": "", "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": list( mapMaybe(ComputeNativeFunctionStub(), native_functions) ), "static_init_dispatch_registrations": static_init_dispatch_registrations, }, ) ( aten_schema_registrations, schema_registrations, ) = get_native_function_schema_registrations( native_functions=native_functions, schema_selector=selector, ) cpu_fm.write( "RegisterSchema.cpp", lambda: { "schema_registrations": schema_registrations, "aten_schema_registrations": aten_schema_registrations, }, ) def translate_native_yaml( tags_yaml_path: str, aten_yaml_path: str, native_yaml_path: Optional[str], use_aten_lib: bool, out_file: TextIO, ) -> None: """Translates Executorch DSL dialect to use the same syntax as native_functions.yaml. The major difference is that Executorch DSL dialect supports "op" key, where it refers to the operator name in native_functions.yaml. For example, a functions.yaml may have the following entry: - op: add.out ... It needs to be translated to the following: - func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!) ... We go in aten_yaml_path and find the operator schema for "add.out" and add it to the original functions.yaml. We also add required field "variants", where for Executorch it will always be "function". For ATen mode we don't have to do the translation because native_yaml_path is the same as native_functions.yaml. Args: tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing. It is not optional. aten_yaml_path: Path to ATen operator yaml file native_functions.yaml. native_yaml_path: Path to a functions.yaml file to parse. If the path does not exist in the filesystem, it is treated as an empty file. If `custom_ops_yaml_path` exists, the contents of that file are appended to the yaml input to be parsed. use_aten_lib: We use this flag to determine if we want to generate native functions. In ATen mode we should generate out= variants. out_file: The IO object that we are writing into. Returns: None """ if use_aten_lib: with open(aten_yaml_path, "r") as aten_yaml: out_file.writelines(aten_yaml.readlines()) return aten_parsed_yaml = parse_native_yaml( aten_yaml_path, tags_yaml_path, None, skip_native_fns_gen=False, ) aten_native_functions = aten_parsed_yaml.native_functions schema_dict = { f"{f.namespace}::{f.func.name}": str(f.func) for f in aten_native_functions } if ( not native_yaml_path or not os.path.exists(native_yaml_path) or os.stat(native_yaml_path).st_size == 0 ): return with open(native_yaml_path, "r") as native_yaml: native_es = yaml.load(native_yaml, Loader=LineLoader) if not native_es: return for e in native_es: assert isinstance(e.get("__line__"), int), e loc = Location(native_yaml_path, e.pop("__line__")) with context(lambda: f"in {loc}:\n "): if "variants" not in e: e["variants"] = "function" if "func" in e: continue assert isinstance(e.get("op"), str), e opname = e.pop("op") if "::" not in opname: opname = "aten::" + opname assert opname in schema_dict e["func"] = schema_dict.get(opname) yaml.dump(native_es, out_file, width=1000) def convert_backend_indices( bs: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] ) -> Dict[DispatchKey, BackendIndex]: indices: Dict[DispatchKey, BackendIndex] = defaultdict( lambda: BackendIndex( dispatch_key=DispatchKey.Undefined, use_out_as_primary=True, external=False, device_guard=False, index={}, ) ) for k, v in bs.items(): indices[k] = BackendIndex( dispatch_key=k, use_out_as_primary=True, external=False, # Only cuda-like devices in tree require device guards device_guard=is_cuda_dispatch_key(k), index=v, ) return indices def parse_yaml( path: Optional[str], tags_yaml_path: str, function_filter: Callable[[NativeFunction], bool], skip_native_fns_gen: bool = False, ) -> Tuple[ List[NativeFunction], Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] ]: if path and os.path.exists(path) and os.stat(path).st_size > 0: parsed_yaml = parse_native_yaml( path, tags_yaml_path, None, skip_native_fns_gen=skip_native_fns_gen, ) native_functions = list(filter(function_filter, parsed_yaml.native_functions)) op_names = [f.func.name for f in native_functions] def map_index( m: Dict[OperatorName, BackendMetadata] ) -> Dict[OperatorName, BackendMetadata]: return {op: m[op] for op in m if op in op_names} backend_indices = { k: map_index(b.index) for (k, b) in parsed_yaml.backend_indices.items() } return native_functions, backend_indices else: return [], {} def parse_yaml_files( tags_yaml_path: str, aten_yaml_path: str, native_yaml_path: Optional[str], custom_ops_yaml_path: Optional[str], selector: SelectiveBuilder, use_aten_lib: bool, ) -> Tuple[ParsedYaml, Optional[ParsedYaml]]: """Parses functions.yaml and custom_ops.yaml files. Args: tags_yaml_path: Path to a tags.yaml file to satisfy codegen parsing. It is not optional. aten_yaml_path: Path to ATen operator yaml file native_functions.yaml. native_yaml_path: Path to a functions.yaml file to parse. If the path does not exist in the filesystem, it is treated as an empty file. If `custom_ops_yaml_path` exists, the contents of that file are appended to the yaml input to be parsed. custom_ops_yaml_path: Path to a custom_ops.yaml file to parse. If the path does not exist in the filesystem, it is ignored. selector: For selective build. use_aten_lib: We use this flag to determine if we want to generate native functions. In ATen mode we should generate out= variants. Returns: A tuple with two elements: [0]: The parsed results of concatenating the contents of `native_yaml_path` and `custom_ops_yaml_path`. [1]: The parsed results of the contents of `custom_ops_yaml_path`, if present. If not present, None. """ import tempfile # only include selected ops, this is because we want to avoid def function_filter(f: NativeFunction) -> bool: return selector.is_native_function_selected(f) with tempfile.TemporaryDirectory() as tmpdirname: translated_yaml_path = os.path.join(tmpdirname, "translated.yaml") with open(translated_yaml_path, "w") as translated: translate_native_yaml( tags_yaml_path, aten_yaml_path, native_yaml_path, use_aten_lib, translated, ) translated_functions, translated_backend_indices = parse_yaml( translated_yaml_path, tags_yaml_path, function_filter, not use_aten_lib ) custom_ops_functions, custom_ops_backend_indices = parse_yaml( custom_ops_yaml_path, tags_yaml_path, function_filter, True ) combined_functions = translated_functions + custom_ops_functions combined_backend_indices: Dict[ DispatchKey, Dict[OperatorName, BackendMetadata] ] = defaultdict(dict) combined_backend_indices.update(translated_backend_indices) for dk in custom_ops_backend_indices: if dk not in combined_backend_indices: combined_backend_indices.update({dk: custom_ops_backend_indices[dk]}) else: combined_backend_indices[dk] = { **combined_backend_indices[dk], **custom_ops_backend_indices[dk], } combined_yaml = ParsedYaml( combined_functions, convert_backend_indices(combined_backend_indices) ) custom_ops_parsed_yaml = ParsedYaml( custom_ops_functions, convert_backend_indices(custom_ops_backend_indices) ) return combined_yaml, custom_ops_parsed_yaml def main() -> None: parser = argparse.ArgumentParser(description="Generate operator source files") # Although we don't refer to --source-path directly, make_file_manager() # expects it to point to a directory that contains a templates/ subdirectory # containing the file templates. parser.add_argument( "-s", "--source-path", help="path to source directory for kernel templates", ) parser.add_argument( "--functions-yaml-path", "--functions_yaml_path", help="path to the functions.yaml file to use. Optional, but at least " "one of --functions-yaml-path and --custom-ops-yaml-path must be " "specified.", ) parser.add_argument( "--custom-ops-yaml-path", "--custom_ops_yaml_path", help="path to the custom_ops.yaml file to use. Optional, but at least " "one of --functions-yaml-path and --custom-ops-yaml-path must be " "specified.", ) parser.add_argument( "--aten-yaml-path", "--aten_yaml_path", help="path to native_functions.yaml file.", ) # Note that make_file_manager() also looks at --install-dir. parser.add_argument( "-d", "--install-dir", "--install_dir", help="output directory", default="build/generated", ) parser.add_argument( "-o", "--output-dependencies", help="output a list of dependencies into the given file and exit", ) # Although we don't refer to --dry-run directly, make_file_manager() looks # for it. parser.add_argument( "--dry-run", action="store_true", help="run without writing any files (still updates outputs)", ) parser.add_argument( "--static-dispatch-backend", "--static_dispatch_backend", nargs="*", help="generate static dispatch code for the specific backend (if set)", ) parser.add_argument( "--op-registration-whitelist", "--op_registration_whitelist", nargs="*", help="filter op registrations by the whitelist (if set); " "each item is `namespace`::`operator name` without overload name; " "e.g.: aten::empty aten::conv2d ...", ) parser.add_argument( "--op-selection-yaml-path", "--op_selection_yaml_path", help="Provide a path to the operator selection (for custom build) YAML " "that contains the information about the set of selected operators " "and their categories (training, ...). Each operator is either a " "full operator name with overload or just a bare operator name. " "The operator names also contain the namespace prefix (e.g. aten::)", ) parser.add_argument( "--tags-path", help="Path to tags.yaml. Required by yaml parsing in codegen system.", ) parser.add_argument( "--rocm", action="store_true", help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly", ) parser.add_argument( "--use-aten-lib", "--use_aten_lib", action="store_true", help="a boolean flag to indicate whether we use ATen kernels or not, in the future this flag will be per " "operator", ) parser.add_argument( "--generate", type=str, nargs="*", choices=["headers", "sources"], default=["headers", "sources"], help="Generate only a subset of files", ) options = parser.parse_args() assert options.tags_path, "tags.yaml is required by codegen yaml parsing." selector = get_custom_build_selector( options.op_registration_whitelist, options.op_selection_yaml_path, ) parsed_yaml, custom_ops_parsed_yaml = parse_yaml_files( aten_yaml_path=options.aten_yaml_path, tags_yaml_path=options.tags_path, native_yaml_path=options.functions_yaml_path, custom_ops_yaml_path=options.custom_ops_yaml_path, selector=selector, use_aten_lib=options.use_aten_lib, ) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) custom_ops_native_functions = ( custom_ops_parsed_yaml.native_functions if custom_ops_parsed_yaml else [] ) cpu_fm = make_file_manager(options=options) static_dispatch_idx: List[BackendIndex] = [backend_indices[DispatchKey.CPU]] if "headers" in options.generate: gen_headers( native_functions=native_functions, custom_ops_native_functions=custom_ops_native_functions, static_dispatch_idx=static_dispatch_idx, selector=selector, backend_indices=backend_indices, cpu_fm=cpu_fm, use_aten_lib=options.use_aten_lib, ) if "sources" in options.generate: gen_unboxing( native_functions=native_functions, cpu_fm=cpu_fm, selector=selector, use_aten_lib=options.use_aten_lib, ) if custom_ops_native_functions: gen_custom_ops( native_functions=custom_ops_native_functions, selector=selector, backend_indices=backend_indices, cpu_fm=cpu_fm, rocm=options.rocm, ) if options.output_dependencies: depfile_path = pathlib.Path(options.output_dependencies).resolve() depfile_name = depfile_path.name depfile_stem = depfile_path.stem for fm, prefix in [ (cpu_fm, ""), ]: varname = prefix + depfile_stem path = depfile_path.parent / (prefix + depfile_name) fm.write_outputs(varname, str(path)) if __name__ == "__main__": main()