r"""Importing this file must **not** initialize CUDA context. test_distributed relies on this assumption to properly run. This means that when this is imported no CUDA calls shall be made, including torch.cuda.device_count(), etc. torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported. """ import argparse import contextlib import copy import ctypes import errno import functools import gc import inspect import io import json import math import operator import os import platform import random import re import shutil import socket import subprocess import sys import tempfile import threading import time import types import unittest import warnings from collections.abc import Mapping, Sequence from contextlib import closing, contextmanager from copy import deepcopy from enum import Enum from functools import partial, wraps from itertools import product, chain from pathlib import Path from statistics import mean from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Type, TypeVar, Union, ) from unittest.mock import MagicMock import expecttest import numpy as np import __main__ # type: ignore[import] import torch import torch.backends.cudnn import torch.backends.mkl import torch.backends.xnnpack import torch.cuda from torch import Tensor from torch._C import ScriptDict, ScriptList # type: ignore[attr-defined] from torch._utils_internal import get_writable_path from torch.nn import ( ModuleDict, ModuleList, ParameterDict, ParameterList, Sequential, ) from torch.onnx import ( register_custom_op_symbolic, unregister_custom_op_symbolic, ) from torch.testing import make_tensor from torch.testing._comparison import ( BooleanPair, NonePair, NumberPair, Pair, TensorLikePair, ) from torch.testing._comparison import not_close_error_metas from torch.testing._internal.common_dtype import get_all_dtypes import torch.utils._pytree as pytree from .composite_compliance import no_dispatch torch.backends.disable_global_flags() FILE_SCHEMA = "file://" if sys.platform == 'win32': FILE_SCHEMA = "file:///" IS_CI = bool(os.getenv('CI')) IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle' IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1' IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1' RETRY_TEST_CASES = os.getenv('PYTORCH_RETRY_TEST_CASES') == '1' OVERRIDE_FLAKY_SIGNAL = os.getenv('PYTORCH_OVERRIDE_FLAKY_SIGNAL') == '1' DISABLE_RUNNING_SCRIPT_CHK = os.getenv('PYTORCH_DISABLE_RUNNING_SCRIPT_CHK') == '1' DEFAULT_DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json' DEFAULT_SLOW_TESTS_FILE = '.pytorch-slow-tests.json' disabled_tests_dict = {} slow_tests_dict = {} # set them here in case the tests are running in a subprocess that doesn't call run_tests if os.getenv("SLOW_TESTS_FILE", ""): with open(os.getenv("SLOW_TESTS_FILE"), 'r') as fp: slow_tests_dict = json.load(fp) warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") if os.getenv("DISABLED_TESTS_FILE", ""): with open(os.getenv("DISABLED_TESTS_FILE"), 'r') as fp: disabled_tests_dict = json.load(fp) warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") NATIVE_DEVICES = ('cpu', 'cuda', 'meta') class _TestParametrizer: """ Decorator class for parametrizing a test function, yielding a set of new tests spawned from the original generic test, each specialized for a specific set of test inputs. For example, parametrizing a test across the set of ops will result in a test function per op. The decision of how to parametrize / what to parametrize over is intended to be implemented by each derived class. In the details, the decorator adds a 'parametrize_fn' property to the test function that is called during device-specific test instantiation performed in instantiate_device_type_tests(). Because of this, there is no need to parametrize over device type, as that is already handled separately. If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new composite 'parametrize_fn' will be created that generates tests with the product of the parameters generated by the old and new parametrize_fns. This allows for convenient composability of decorators. """ def _parametrize_test(self, test, generic_cls, device_cls): """ Parametrizes the given test function across whatever dimension is specified by the derived class. Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all ops, all modules, or all ops + their associated dtypes. Args: test (fn): Test function to parametrize over generic_cls (class): Generic test class object containing tests (e.g. TestFoo) device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None if the tests are not part of a device-specific set Returns: Generator object returning 4-tuples of: test (fn): Parametrized test function; must support a device arg and args for any params test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to the base name of the test param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64}) decorator_fn (callable): Callable[[Dict], List] for list of decorators to apply given param_kwargs """ raise NotImplementedError def __call__(self, fn): if hasattr(fn, 'parametrize_fn'): # Do composition with the product of args. old_parametrize_fn = fn.parametrize_fn new_parametrize_fn = self._parametrize_test fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn) else: fn.parametrize_fn = self._parametrize_test return fn def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn): """ Returns a parametrize_fn that parametrizes over the product of the parameters handled by the given parametrize_fns. Each given parametrize_fn should each have the signature f(test, generic_cls, device_cls). The test names will be a combination of the names produced by the parametrize_fns in "_" order. This order is done to match intuition for constructed names when composing multiple decorators; the names will be built in top to bottom order when stacking parametrization decorators. Args: old_parametrize_fn (callable) - First parametrize_fn to compose. new_parametrize_fn (callable) - Second parametrize_fn to compose. """ def composite_fn(test, generic_cls, device_cls, old_parametrize_fn=old_parametrize_fn, new_parametrize_fn=new_parametrize_fn): old_tests = list(old_parametrize_fn(test, generic_cls, device_cls)) for (old_test, old_test_name, old_param_kwargs, old_dec_fn) in old_tests: for (new_test, new_test_name, new_param_kwargs, new_dec_fn) in \ new_parametrize_fn(old_test, generic_cls, device_cls): redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys()) if redundant_params: raise RuntimeError('Parametrization over the same parameter by multiple parametrization ' 'decorators is not supported. For test "{}", the following parameters ' 'are handled multiple times: {}'.format( test.__name__, redundant_params)) full_param_kwargs = {**old_param_kwargs, **new_param_kwargs} merged_test_name = '{}{}{}'.format(new_test_name, '_' if old_test_name != '' and new_test_name != '' else '', old_test_name) def merged_decorator_fn(param_kwargs, old_dec_fn=old_dec_fn, new_dec_fn=new_dec_fn): return list(old_dec_fn(param_kwargs)) + list(new_dec_fn(param_kwargs)) yield (new_test, merged_test_name, full_param_kwargs, merged_decorator_fn) return composite_fn def instantiate_parametrized_tests(generic_cls): """ Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by parametrized tests with specialized names. You can also use it as a class decorator. E.g. ``` @instantiate_parametrized_tests class TestFoo(TestCase): ... ``` Args: generic_cls (class): Generic test class object containing tests (e.g. TestFoo) """ for attr_name in tuple(dir(generic_cls)): class_attr = getattr(generic_cls, attr_name) if not hasattr(class_attr, 'parametrize_fn'): continue # Remove the generic test from the test class. delattr(generic_cls, attr_name) # Add parametrized tests to the test class. def instantiate_test_helper(cls, name, test, param_kwargs): @wraps(test) def instantiated_test(self, param_kwargs=param_kwargs): test(self, **param_kwargs) assert not hasattr(generic_cls, name), "Redefinition of test {0}".format(name) setattr(generic_cls, name, instantiated_test) for (test, test_suffix, param_kwargs, decorator_fn) in class_attr.parametrize_fn( class_attr, generic_cls=generic_cls, device_cls=None): full_name = '{}_{}'.format(test.__name__, test_suffix) # Apply decorators based on full param kwargs. for decorator in decorator_fn(param_kwargs): test = decorator(test) instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs) return generic_cls class subtest: """ Explicit subtest case for use with test parametrization. Allows for explicit naming of individual subtest cases as well as applying decorators to the parametrized test. Args: arg_values (iterable): Iterable of arg values (e.g. range(10)) or tuples of arg values (e.g. [(1, 2), (3, 4)]). name (str): Optional name to use for the test. decorators (iterable): Iterable of decorators to apply to the generated test. """ __slots__ = ['arg_values', 'name', 'decorators'] def __init__(self, arg_values, name=None, decorators=None): self.arg_values = arg_values self.name = name self.decorators = decorators if decorators else [] class parametrize(_TestParametrizer): """ Decorator for applying generic test parametrizations. The interface for this decorator is modeled after `@pytest.mark.parametrize`. Basic usage between this decorator and pytest's is identical. The first argument should be a string containing comma-separated names of parameters for the test, and the second argument should be an iterable returning values or tuples of values for the case of multiple parameters. Beyond this basic usage, the decorator provides some additional functionality that pytest does not. 1. Parametrized tests end up as generated test functions on unittest test classes. Since this differs from how pytest works, this decorator takes on the additional responsibility of naming these test functions. The default test names consists of the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"), but custom names can be defined using `name_fn` or the `subtest` structure (see below). 2. The decorator specially handles parameter values of type `subtest`, which allows for more fine-grained control over both test naming and test execution. In particular, it can be used to tag subtests with explicit test names or apply arbitrary decorators (see examples below). Examples:: @parametrize("x", range(5)) def test_foo(self, x): ... @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')]) def test_bar(self, x, y): ... @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')], name_fn=lambda x, y: '{}_{}'.format(x, y)) def test_bar_custom_names(self, x, y): ... @parametrize("x, y", [subtest((1, 2), name='double'), subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]), subtest((1, 4), name='quadruple')]) def test_baz(self, x, y): ... Args: arg_str (str): String of arg names separate by commas (e.g. "x,y"). arg_values (iterable): Iterable of arg values (e.g. range(10)) or tuples of arg values (e.g. [(1, 2), (3, 4)]). name_fn (Callable): Optional function that takes in parameters and returns subtest name. """ def __init__(self, arg_str, arg_values, name_fn=None): self.arg_names: List[str] = [s.strip() for s in arg_str.split(',') if s != ''] self.arg_values = arg_values self.name_fn = name_fn def _formatted_str_repr(self, name, value): """ Returns a string representation for the given arg that is suitable for use in test function names. """ if isinstance(value, torch.dtype): return dtype_name(value) elif isinstance(value, torch.device): return str(value) # Can't use isinstance as it would cause a circular import elif value.__class__.__name__ == 'OpInfo' or value.__class__.__name__ == 'ModuleInfo': return value.formatted_name else: # Include name and value separated by underscore. return '{}_{}'.format(name, str(value).replace('.', '_')) def _default_subtest_name(self, values): return '_'.join([self._formatted_str_repr(a, v) for a, v in zip(self.arg_names, values)]) def _get_subtest_name(self, values, explicit_name=None): if explicit_name: subtest_name = explicit_name elif self.name_fn: subtest_name = self.name_fn(*values) else: subtest_name = self._default_subtest_name(values) return subtest_name def _parametrize_test(self, test, generic_cls, device_cls): if len(self.arg_names) == 0: # No additional parameters needed for the test. test_name = '' yield (test, test_name, {}, lambda _: []) else: # Each "values" item is expected to be either: # * A tuple of values with one for each arg. For a single arg, a single item is expected. # * A subtest instance with arg_values matching the previous. values = check_exhausted_iterator = object() for values in self.arg_values: maybe_name = None decorators = [] if isinstance(values, subtest): sub = values values = sub.arg_values maybe_name = sub.name @wraps(test) def test_wrapper(*args, **kwargs): return test(*args, **kwargs) decorators = sub.decorators gen_test = test_wrapper else: gen_test = test values = list(values) if len(self.arg_names) > 1 else [values] if len(values) != len(self.arg_names): raise RuntimeError('Expected # values == # arg names, but got: {} ' 'values and {} names for test "{}"'.format( len(values), len(self.arg_names), test.__name__)) param_kwargs = { name: value for name, value in zip(self.arg_names, values) } test_name = self._get_subtest_name(values, explicit_name=maybe_name) def decorator_fn(_, decorators=decorators): return decorators yield (gen_test, test_name, param_kwargs, decorator_fn) if values is check_exhausted_iterator: raise ValueError('An empty arg_values was passed to @parametrize. ' 'Note that this may result from reuse of a generator.') class ProfilingMode(Enum): LEGACY = 1 SIMPLE = 2 PROFILING = 3 def cppProfilingFlagsToProfilingMode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._get_graph_executor_optimize(True) torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._get_graph_executor_optimize(old_prof_mode_state) if old_prof_exec_state: if old_prof_mode_state: return ProfilingMode.PROFILING else: return ProfilingMode.SIMPLE else: return ProfilingMode.LEGACY @contextmanager def enable_profiling_mode_for_profiling_tests(): if GRAPH_EXECUTOR == ProfilingMode.PROFILING: old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._get_graph_executor_optimize(True) try: yield finally: if GRAPH_EXECUTOR == ProfilingMode.PROFILING: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._get_graph_executor_optimize(old_prof_mode_state) @contextmanager def enable_profiling_mode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._get_graph_executor_optimize(True) try: yield finally: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._get_graph_executor_optimize(old_prof_mode_state) @contextmanager def num_profiled_runs(num_runs): old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs) try: yield finally: torch._C._jit_set_num_profiled_runs(old_num_runs) func_call = torch._C.ScriptFunction.__call__ meth_call = torch._C.ScriptMethod.__call__ def prof_callable(callable, *args, **kwargs): if 'profile_and_replay' in kwargs: del kwargs['profile_and_replay'] if GRAPH_EXECUTOR == ProfilingMode.PROFILING: with enable_profiling_mode_for_profiling_tests(): callable(*args, **kwargs) return callable(*args, **kwargs) return callable(*args, **kwargs) def prof_func_call(*args, **kwargs): return prof_callable(func_call, *args, **kwargs) def prof_meth_call(*args, **kwargs): return prof_callable(meth_call, *args, **kwargs) # TODO fix when https://github.com/python/mypy/issues/2427 is address torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment] torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment] def _get_test_report_path(): # allow users to override the test file location. We need this # because the distributed tests run the same test file multiple # times with different configurations. override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE') test_source = override if override is not None else 'python-unittest' return os.path.join('test-reports', test_source) is_running_via_run_test = "run_test.py" in getattr(__main__, "__file__", "") parser = argparse.ArgumentParser(add_help=not is_running_via_run_test, allow_abbrev=False) parser.add_argument('--subprocess', action='store_true', help='whether to run each test in a subprocess') parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--accept', action='store_true') parser.add_argument('--jit-executor', '--jit_executor', type=str) parser.add_argument('--repeat', type=int, default=1) parser.add_argument('--test-bailouts', '--test_bailouts', action='store_true') parser.add_argument('--use-pytest', action='store_true') parser.add_argument('--save-xml', nargs='?', type=str, const=_get_test_report_path(), default=_get_test_report_path() if IS_CI else None) parser.add_argument('--discover-tests', action='store_true') parser.add_argument('--log-suffix', type=str, default="") parser.add_argument('--run-parallel', type=int, default=1) parser.add_argument('--import-slow-tests', type=str, nargs='?', const=DEFAULT_SLOW_TESTS_FILE) parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DEFAULT_DISABLED_TESTS_FILE) parser.add_argument('--rerun-disabled-tests', action='store_true') # Only run when -h or --help flag is active to display both unittest and parser help messages. def run_unittest_help(argv): unittest.main(argv=argv) if '-h' in sys.argv or '--help' in sys.argv: help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,)) help_thread.start() help_thread.join() args, remaining = parser.parse_known_args() if args.jit_executor == 'legacy': GRAPH_EXECUTOR = ProfilingMode.LEGACY elif args.jit_executor == 'profiling': GRAPH_EXECUTOR = ProfilingMode.PROFILING elif args.jit_executor == 'simple': GRAPH_EXECUTOR = ProfilingMode.SIMPLE else: # infer flags based on the default settings GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode() RERUN_DISABLED_TESTS = args.rerun_disabled_tests # Rerun disabled tests many more times to make sure that they are not flaky anymore MAX_NUM_RETRIES = 3 if not RERUN_DISABLED_TESTS else 50 SLOW_TESTS_FILE = args.import_slow_tests DISABLED_TESTS_FILE = args.import_disabled_tests LOG_SUFFIX = args.log_suffix RUN_PARALLEL = args.run_parallel TEST_BAILOUTS = args.test_bailouts USE_PYTEST = args.use_pytest TEST_DISCOVER = args.discover_tests TEST_IN_SUBPROCESS = args.subprocess TEST_SAVE_XML = args.save_xml REPEAT_COUNT = args.repeat SEED = args.seed if not expecttest.ACCEPT: expecttest.ACCEPT = args.accept UNITTEST_ARGS = [sys.argv[0]] + remaining torch.manual_seed(SEED) # CI Prefix path used only on CI environment CI_TEST_PREFIX = str(Path(os.getcwd())) CI_PT_ROOT = str(Path(os.getcwd()).parent) CI_FUNCTORCH_ROOT = str(os.path.join(Path(os.getcwd()).parent, "functorch")) def wait_for_process(p): try: return p.wait() except KeyboardInterrupt: # Give `p` a chance to handle KeyboardInterrupt. Without this, # `pytest` can't print errors it collected so far upon KeyboardInterrupt. exit_status = p.wait(timeout=5) if exit_status is not None: return exit_status else: p.kill() raise except: # noqa: B001,E722, copied from python core library p.kill() raise finally: # Always call p.wait() to ensure exit p.wait() def shell(command, cwd=None, env=None, stdout=None, stderr=None): sys.stdout.flush() sys.stderr.flush() # The following cool snippet is copied from Py3 core library subprocess.call # only the with # 1. `except KeyboardInterrupt` block added for SIGINT handling. # 2. In Py2, subprocess.Popen doesn't return a context manager, so we do # `p.wait()` in a `final` block for the code to be portable. # # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323 assert not isinstance(command, str), "Command to shell should be a list or tuple of tokens" p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env, stdout=stdout, stderr=stderr) return wait_for_process(p) def discover_test_cases_recursively(suite_or_case): if isinstance(suite_or_case, unittest.TestCase): return [suite_or_case] rc = [] for element in suite_or_case: print(element) rc.extend(discover_test_cases_recursively(element)) return rc def get_test_names(test_cases): return ['.'.join(case.id().split('.')[-2:]) for case in test_cases] def _print_test_names(): suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) for name in get_test_names(test_cases): print(name) def chunk_list(lst, nchunks): return [lst[i::nchunks] for i in range(nchunks)] # sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api def sanitize_test_filename(filename): # inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed if filename.startswith(CI_TEST_PREFIX): filename = filename[len(CI_TEST_PREFIX) + 1:] strip_py = re.sub(r'.py$', '', filename) return re.sub('/', r'.', strip_py) def lint_test_case_extension(suite): succeed = True for test_case_or_suite in suite: test_case = test_case_or_suite if isinstance(test_case_or_suite, unittest.TestSuite): first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None if first_test is not None and isinstance(first_test, unittest.TestSuite): return succeed and lint_test_case_extension(test_case_or_suite) test_case = first_test if test_case is not None: test_class = test_case.id().split('.', 1)[1].split('.')[0] if not isinstance(test_case, TestCase): err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't." print(f"{test_class} - failed. {err}") succeed = False return succeed def get_report_path(argv=UNITTEST_ARGS, pytest=False): test_filename = sanitize_test_filename(argv[0]) test_report_path = TEST_SAVE_XML + LOG_SUFFIX test_report_path = os.path.join(test_report_path, test_filename) if pytest: test_report_path = test_report_path.replace('python-unittest', 'python-pytest') os.makedirs(test_report_path, exist_ok=True) test_report_path = os.path.join(test_report_path, f"{test_filename}-{os.urandom(8).hex()}.xml") return test_report_path os.makedirs(test_report_path, exist_ok=True) return test_report_path def sanitize_pytest_xml(xml_file: str): # pytext xml is different from unittext xml, this function makes pytest xml more similar to unittest xml # consider somehow modifying the XML logger in conftest to do this instead import xml.etree.ElementTree as ET tree = ET.parse(xml_file) for testcase in tree.iter('testcase'): full_classname = testcase.attrib['classname'] # The test prefix is optional regex_result = re.search(r"^(test\.)?(?P.*)\.(?P[^\.]*)$", full_classname) classname = regex_result.group("classname") file = regex_result.group("file").replace(".", "/") testcase.set("classname", classname) testcase.set("file", f"{file}.py") tree.write(xml_file) def run_tests(argv=UNITTEST_ARGS): # import test files. if SLOW_TESTS_FILE: if os.path.exists(SLOW_TESTS_FILE): with open(SLOW_TESTS_FILE, 'r') as fp: global slow_tests_dict slow_tests_dict = json.load(fp) # use env vars so pytest-xdist subprocesses can still access them os.environ['SLOW_TESTS_FILE'] = SLOW_TESTS_FILE else: warnings.warn(f'slow test file provided but not found: {SLOW_TESTS_FILE}') if DISABLED_TESTS_FILE: if os.path.exists(DISABLED_TESTS_FILE): with open(DISABLED_TESTS_FILE, 'r') as fp: global disabled_tests_dict disabled_tests_dict = json.load(fp) os.environ['DISABLED_TESTS_FILE'] = DISABLED_TESTS_FILE else: warnings.warn(f'disabled test file provided but not found: {DISABLED_TESTS_FILE}') # Determine the test launch mechanism if TEST_DISCOVER: _print_test_names() return # Before running the tests, lint to check that every test class extends from TestCase suite = unittest.TestLoader().loadTestsFromModule(__main__) if not lint_test_case_extension(suite): sys.exit(1) if TEST_IN_SUBPROCESS: failed_tests = [] test_cases = discover_test_cases_recursively(suite) for case in test_cases: test_case_full_name = case.id().split('.', 1)[1] other_args = [] if DISABLED_TESTS_FILE: other_args.append('--import-disabled-tests') if SLOW_TESTS_FILE: other_args.append('--import-slow-tests') cmd = [sys.executable] + [argv[0]] + other_args + argv[1:] + [test_case_full_name] string_cmd = " ".join(cmd) exitcode = shell(cmd) if exitcode != 0: # This is sort of hacky, but add on relevant env variables for distributed tests. if 'TestDistBackendWithSpawn' in test_case_full_name: backend = os.environ.get("BACKEND", "") world_size = os.environ.get("WORLD_SIZE", "") env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}" string_cmd = env_prefix + " " + string_cmd # Log the command to reproduce the failure. print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}") failed_tests.append(test_case_full_name) assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format( len(failed_tests), '\n\t'.join(failed_tests)) elif RUN_PARALLEL > 1: test_cases = discover_test_cases_recursively(suite) test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL) processes = [] for i in range(RUN_PARALLEL): command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i] processes.append(subprocess.Popen(command, universal_newlines=True)) failed = False for p in processes: failed |= wait_for_process(p) != 0 assert not failed, "Some test shards have failed" elif USE_PYTEST: pytest_args = argv if TEST_SAVE_XML: test_report_path = get_report_path(pytest=True) print(f'Test results will be stored in {test_report_path}') pytest_args = pytest_args + [f'--junit-xml-reruns={test_report_path}'] import pytest os.environ["NO_COLOR"] = "1" os.environ["USING_PYTEST"] = "1" exit_code = pytest.main(args=pytest_args) del os.environ["USING_PYTEST"] if TEST_SAVE_XML: sanitize_pytest_xml(test_report_path) print("If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them") if not RERUN_DISABLED_TESTS: # exitcode of 5 means no tests were found, which happens since some test configs don't # run tests from certain files exit(0 if exit_code == 5 else exit_code) else: # Only record the test report and always return a success code when running under rerun # disabled tests mode exit(0) elif TEST_SAVE_XML is not None: # import here so that non-CI doesn't need xmlrunner installed import xmlrunner # type: ignore[import] from xmlrunner.result import _XMLTestResult # type: ignore[import] class XMLTestResultVerbose(_XMLTestResult): """ Adding verbosity to test outputs: by default test summary prints 'skip', but we want to also print the skip reason. GH issue: https://github.com/pytorch/pytorch/issues/69014 This works with unittest_xml_reporting<=3.2.0,>=2.0.0 (3.2.0 is latest at the moment) """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def addSkip(self, test, reason): super().addSkip(test, reason) for c in self.callback.__closure__: if isinstance(c.cell_contents, str) and c.cell_contents == 'skip': # this message is printed in test summary; # it stands for `verbose_str` captured in the closure c.cell_contents = f"skip: {reason}" def printErrors(self) -> None: super().printErrors() self.printErrorList("XPASS", self.unexpectedSuccesses) test_report_path = get_report_path() verbose = '--verbose' in argv or '-v' in argv if verbose: print(f'Test results will be stored in {test_report_path}') unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner( output=test_report_path, verbosity=2 if verbose else 1, resultclass=XMLTestResultVerbose)) elif REPEAT_COUNT > 1: for _ in range(REPEAT_COUNT): if not unittest.main(exit=False, argv=argv).result.wasSuccessful(): sys.exit(-1) else: unittest.main(argv=argv) IS_LINUX = sys.platform == "linux" IS_WINDOWS = sys.platform == "win32" IS_MACOS = sys.platform == "darwin" IS_PPC = platform.machine() == "ppc64le" IS_X86 = platform.machine() in ('x86_64', 'i386') IS_ARM64 = platform.machine() == 'arm64' def is_avx512_vnni_supported(): if sys.platform != 'linux': return False with open("/proc/cpuinfo", encoding="ascii") as f: lines = f.read() return "vnni" in lines IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported() if IS_WINDOWS: @contextmanager def TemporaryFileName(*args, **kwargs): # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile # opens the file, and it cannot be opened multiple times in Windows. To support Windows, # close the file after creation and try to remove it manually if 'delete' in kwargs: if kwargs['delete'] is not False: raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.") else: kwargs['delete'] = False f = tempfile.NamedTemporaryFile(*args, **kwargs) try: f.close() yield f.name finally: os.unlink(f.name) else: @contextmanager # noqa: T484 def TemporaryFileName(*args, **kwargs): with tempfile.NamedTemporaryFile(*args, **kwargs) as f: yield f.name if IS_WINDOWS: @contextmanager def TemporaryDirectoryName(suffix=None): # On Windows the directory created by TemporaryDirectory is likely to be removed prematurely, # so we first create the directory using mkdtemp and then remove it manually try: dir_name = tempfile.mkdtemp(suffix=suffix) yield dir_name finally: shutil.rmtree(dir_name) else: @contextmanager # noqa: T484 def TemporaryDirectoryName(suffix=None): with tempfile.TemporaryDirectory(suffix=suffix) as d: yield d IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8' def _check_module_exists(name: str) -> bool: r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ try: import importlib.util spec = importlib.util.find_spec(name) return spec is not None except ImportError: return False TEST_NUMPY = _check_module_exists('numpy') TEST_FAIRSEQ = _check_module_exists('fairseq') TEST_SCIPY = _check_module_exists('scipy') TEST_MKL = torch.backends.mkl.is_available() TEST_CUDA = torch.cuda.is_available() TEST_NUMBA = _check_module_exists('numba') TEST_DILL = _check_module_exists('dill') TEST_LIBROSA = _check_module_exists('librosa') and not IS_ARM64 TEST_OPT_EINSUM = _check_module_exists('opt_einsum') BUILD_WITH_CAFFE2 = torch.onnx._CAFFE2_ATEN_FALLBACK # Python 2.7 doesn't have spawn NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1' TEST_WITH_DEV_DBG_ASAN = os.getenv('PYTORCH_TEST_WITH_DEV_DBG_ASAN', '0') == '1' TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1' TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1' TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1' # Enables tests that are slow to run (disabled by default) TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1' # Disables non-slow tests (these tests enabled by default) # This is usually used in conjunction with TEST_WITH_SLOW to # run *only* slow tests. (I could have done an enum, but # it felt a little awkward. TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1' # Enables crossref tests, in addition to standard tests which # are being run. crossref tests work by installing a torch # function mode that runs extra compute alongside the regular # computation that happens with the test. After both computations # are done, we cross-reference them (thus the name) to check for # correction, before throwing out the extra compute and proceeding # as we had before. By default, we don't run these tests. TEST_WITH_CROSSREF = os.getenv('PYTORCH_TEST_WITH_CROSSREF', '0') == '1' if TEST_CUDA and 'NUM_PARALLEL_PROCS' in os.environ: num_procs = int(os.getenv("NUM_PARALLEL_PROCS", "2")) # other libraries take up about 11% of space per process torch.cuda.set_per_process_memory_fraction(round(1 / num_procs - .11, 2)) def skipIfCrossRef(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_CROSSREF: raise unittest.SkipTest("test doesn't currently with crossref") else: fn(*args, **kwargs) return wrapper class CrossRefMode(torch.overrides.TorchFunctionMode): def __torch_function__(self, func, types, args=(), kwargs=None): kwargs = kwargs or {} r = func(*args, **kwargs) return r # Run PyTorch tests with TorchDynamo TEST_WITH_TORCHINDUCTOR = os.getenv('PYTORCH_TEST_WITH_INDUCTOR') == '1' TEST_WITH_TORCHDYNAMO = os.getenv('PYTORCH_TEST_WITH_DYNAMO') == '1' or TEST_WITH_TORCHINDUCTOR if TEST_WITH_TORCHDYNAMO: import torch._dynamo # Do not spend time on helper functions that are called with different inputs torch._dynamo.config.cache_size_limit = 8 # TODO: Remove this; this is grandfathered in because we suppressed errors # on test suite previously torch._dynamo.config.suppress_errors = True if TEST_WITH_TORCHINDUCTOR: import torch._inductor.config torch._inductor.config.fallback_random = True def skipIfTorchDynamo(msg="test doesn't currently work with dynamo"): def decorator(fn): if not isinstance(fn, type): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_TORCHDYNAMO: raise unittest.SkipTest(msg) else: fn(*args, **kwargs) return wrapper assert(isinstance(fn, type)) if TEST_WITH_TORCHDYNAMO: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = msg return fn return decorator def skipIfTorchInductor(msg="test doesn't currently work with torchinductor"): def decorator(fn): if not isinstance(fn, type): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_TORCHINDUCTOR: raise unittest.SkipTest(msg) else: fn(*args, **kwargs) return wrapper assert(isinstance(fn, type)) if TEST_WITH_TORCHINDUCTOR: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = msg return fn return decorator # Determine whether to enable cuda memory leak check. # CUDA mem leak check is expensive and thus we don't want to execute it on every # test case / configuration. # If this is True then CUDA memory leak checks are skipped. If this is false # then CUDA memory leak checks are performed. # See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135 TEST_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_CUDA_MEM_LEAK_CHECK', '0') == '1' # True if CI is running TBB-enabled Pytorch IS_TBB = "tbb" in os.getenv("BUILD_ENVIRONMENT", "") # Dict of NumPy dtype -> torch dtype (when the correspondence exists) numpy_to_torch_dtype_dict = { np.bool_ : torch.bool, np.uint8 : torch.uint8, np.int8 : torch.int8, np.int16 : torch.int16, np.int32 : torch.int32, np.int64 : torch.int64, np.float16 : torch.float16, np.float32 : torch.float32, np.float64 : torch.float64, np.complex64 : torch.complex64, np.complex128 : torch.complex128 } # numpy dtypes like np.float64 are not instances, but rather classes. This leads to rather absurd cases like # np.float64 != np.dtype("float64") but np.float64 == np.dtype("float64").type. # Especially when checking against a reference we can't be sure which variant we get, so we simply try both. def numpy_to_torch_dtype(np_dtype): try: return numpy_to_torch_dtype_dict[np_dtype] except KeyError: return numpy_to_torch_dtype_dict[np_dtype.type] def has_corresponding_torch_dtype(np_dtype): try: numpy_to_torch_dtype(np_dtype) return True except KeyError: return False if IS_WINDOWS: # Size of `np.intc` is platform defined. # It is returned by functions like `bitwise_not`. # On Windows `int` is 32-bit # https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160 numpy_to_torch_dtype_dict[np.intc] = torch.int # Dict of torch dtype -> NumPy dtype torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} torch_to_numpy_dtype_dict.update({ torch.bfloat16: np.float32, torch.complex32: np.complex64 }) def skipIfRocm(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_ROCM: raise unittest.SkipTest("test doesn't currently work on the ROCm stack") else: fn(*args, **kwargs) return wrapper def skipIfMps(fn): @wraps(fn) def wrapper(*args, **kwargs): if torch.backends.mps.is_available(): raise unittest.SkipTest("test doesn't currently work with MPS") else: fn(*args, **kwargs) return wrapper # Skips a test on CUDA if ROCm is available and its version is lower than requested. def skipIfRocmVersionLessThan(version=None): def dec_fn(fn): @wraps(fn) def wrap_fn(self, *args, **kwargs): if TEST_WITH_ROCM: rocm_version = str(torch.version.hip) rocm_version = rocm_version.split("-")[0] # ignore git sha rocm_version_tuple = tuple(int(x) for x in rocm_version.split(".")) if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version): reason = "ROCm {0} is available but {1} required".format(rocm_version_tuple, version) raise unittest.SkipTest(reason) return fn(self, *args, **kwargs) return wrap_fn return dec_fn # Temporary function to simplify adding support to 3.11 def xfailIfPython311(fn): if sys.version_info < (3, 11): return fn else: return unittest.expectedFailure(fn) def skipIfNotMiopenSuggestNHWC(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_WITH_MIOPEN_SUGGEST_NHWC: raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation") else: fn(*args, **kwargs) return wrapper # Context manager for setting deterministic flag and automatically # resetting it to its original value class DeterministicGuard: def __init__(self, deterministic, *, warn_only=False): self.deterministic = deterministic self.warn_only = warn_only def __enter__(self): self.deterministic_restore = torch.are_deterministic_algorithms_enabled() self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled() torch.use_deterministic_algorithms( self.deterministic, warn_only=self.warn_only) def __exit__(self, exception_type, exception_value, traceback): torch.use_deterministic_algorithms( self.deterministic_restore, warn_only=self.warn_only_restore) # Context manager for setting cuda sync debug mode and reset it # to original value # we are not exposing it to the core because sync debug mode is # global and thus not thread safe class CudaSyncGuard: def __init__(self, sync_debug_mode): self.mode = sync_debug_mode def __enter__(self): self.debug_mode_restore = torch.cuda.get_sync_debug_mode() torch.cuda.set_sync_debug_mode(self.mode) def __exit__(self, exception_type, exception_value, traceback): torch.cuda.set_sync_debug_mode(self.debug_mode_restore) # This decorator can be used for API tests that call # torch.use_deterministic_algorithms(). When the test is finished, it will # restore the previous deterministic flag setting. # # If CUDA >= 10.2, this will set the environment variable # CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that # setting is not thrown during the test unless the test changes that variable # on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be # restored once the test is finished. # # Note that if a test requires CUDA to actually register the changed # CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because # CUDA only checks the variable when the runtime initializes. Tests can be # run inside a subprocess like so: # # import subprocess, sys, os # script = ''' # # Test code should go here # ''' # try: # subprocess.check_output( # [sys.executable, '-c', script], # stderr=subprocess.STDOUT, # cwd=os.path.dirname(os.path.realpath(__file__)), # env=os.environ.copy()) # except subprocess.CalledProcessError as e: # error_message = e.output.decode('utf-8') # # Handle exceptions raised by the subprocess here # def wrapDeterministicFlagAPITest(fn): @wraps(fn) def wrapper(*args, **kwargs): with DeterministicGuard( torch.are_deterministic_algorithms_enabled(), warn_only=torch.is_deterministic_algorithms_warn_only_enabled()): class CuBLASConfigGuard: cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG' def __enter__(self): self.is_cuda10_2_or_higher = ( (torch.version.cuda is not None) and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2])) if self.is_cuda10_2_or_higher: self.cublas_config_restore = os.environ.get(self.cublas_var_name) os.environ[self.cublas_var_name] = ':4096:8' def __exit__(self, exception_type, exception_value, traceback): if self.is_cuda10_2_or_higher: cur_cublas_config = os.environ.get(self.cublas_var_name) if self.cublas_config_restore is None: if cur_cublas_config is not None: del os.environ[self.cublas_var_name] else: os.environ[self.cublas_var_name] = self.cublas_config_restore with CuBLASConfigGuard(): fn(*args, **kwargs) return wrapper def skipIfCompiledWithoutNumpy(fn): # Even if the numpy module is present, if `USE_NUMPY=0` is used during the # build, numpy tests will fail numpy_support = TEST_NUMPY if numpy_support: try: # The numpy module is present, verify that PyTorch is compiled with # numpy support torch.from_numpy(np.array([2, 2])) except RuntimeError: numpy_support = False @wraps(fn) def wrapper(*args, **kwargs): if not numpy_support: raise unittest.SkipTest("PyTorch was compiled without numpy support") else: fn(*args, **kwargs) return wrapper def _test_function(fn, device): def run_test_function(self): return fn(self, device) return run_test_function def skipIfNoXNNPACK(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch.backends.xnnpack.enabled: raise unittest.SkipTest('XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.') else: fn(*args, **kwargs) return wrapper def skipIfNoLapack(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch._C.has_lapack: raise unittest.SkipTest('PyTorch compiled without Lapack') else: fn(*args, **kwargs) return wrapper def skipIfNotRegistered(op_name, message): """Wraps the decorator to hide the import of the `core`. Args: op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`. message: message to fail with. Usage: @skipIfNotRegistered('MyOp', 'MyOp is not linked!') This will check if 'MyOp' is in the caffe2.python.core """ if not BUILD_WITH_CAFFE2: return unittest.skip("Pytorch is compiled without Caffe2") try: from caffe2.python import core skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS, message) except ImportError: skipper = unittest.skip("Cannot import `caffe2.python.core`") return skipper def _decide_skip_caffe2(expect_caffe2, reason): def skip_dec(func): @wraps(func) def wrapper(self): if torch.onnx._CAFFE2_ATEN_FALLBACK != expect_caffe2: raise unittest.SkipTest(reason) return func(self) return wrapper return skip_dec skipIfCaffe2 = _decide_skip_caffe2(False, "Not compatible with Caffe2") skipIfNoCaffe2 = _decide_skip_caffe2(True, "Caffe2 is not available") def skipIfNoSciPy(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_SCIPY: raise unittest.SkipTest("test require SciPy, but SciPy not found") else: fn(*args, **kwargs) return wrapper def skipIfTBB(message="This test makes TBB sad"): def dec_fn(fn): @wraps(fn) def wrapper(*args, **kwargs): if IS_TBB: raise unittest.SkipTest(message) else: fn(*args, **kwargs) return wrapper return dec_fn def slowTest(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") else: fn(*args, **kwargs) wrapper.__dict__['slow_test'] = True return wrapper def slowAwareTest(fn): fn.__dict__['slow_test'] = True return fn def skipCUDAMemoryLeakCheckIf(condition): def dec(fn): if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True fn._do_cuda_memory_leak_check = not condition return fn return dec def skipCUDANonDefaultStreamIf(condition): def dec(fn): if getattr(fn, '_do_cuda_non_default_stream', True): # if current True fn._do_cuda_non_default_stream = not condition return fn return dec def suppress_warnings(fn): @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") fn(*args, **kwargs) return wrapper def to_gpu(obj, type_map=None): if type_map is None: type_map = {} if isinstance(obj, torch.Tensor): assert obj.is_leaf t = type_map.get(obj.dtype, obj.dtype) with torch.no_grad(): res = obj.clone().to(dtype=t, device="cuda") res.requires_grad = obj.requires_grad return res elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj) def get_function_arglist(func): return inspect.getfullargspec(func).args def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) if TEST_NUMPY: np.random.seed(seed) @contextmanager def disable_functorch(): guard = torch._C._DisableFuncTorch() # type: ignore[attr-defined] try: yield finally: del guard @contextlib.contextmanager def freeze_rng_state(): # no_dispatch needed for test_composite_compliance # Some OpInfos use freeze_rng_state for rng determinism, but # test_composite_compliance overrides dispatch for all torch functions # which we need to disable to get and set rng state with no_dispatch(), disable_functorch(): rng_state = torch.get_rng_state() if torch.cuda.is_available(): cuda_rng_state = torch.cuda.get_rng_state() try: yield finally: # Modes are not happy with torch.cuda.set_rng_state # because it clones the state (which could produce a Tensor Subclass) # and then grabs the new tensor's data pointer in generator.set_state. # # In the long run torch.cuda.set_rng_state should probably be # an operator. # # NB: Mode disable is to avoid running cross-ref tests on thes seeding with no_dispatch(), disable_functorch(): if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(rng_state) @contextlib.contextmanager def set_default_dtype(dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) try: yield finally: torch.set_default_dtype(saved_dtype) def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size())) def is_iterable(obj): try: iter(obj) return True except TypeError: return False def is_iterable_of_tensors(iterable, include_empty=False): """ Returns True if iterable is an iterable of tensors and False o.w. If the iterable is empty, the return value is :attr:`include_empty` """ # Tensor itself is iterable so we check this first if isinstance(iterable, torch.Tensor): return False try: if len(iterable) == 0: return include_empty for t in iter(iterable): if not isinstance(t, torch.Tensor): return False except TypeError as te: return False return True class CudaNonDefaultStream(): def __enter__(self): # Before starting CUDA test save currently active streams on all # CUDA devices and set new non default streams to all CUDA devices # to ensure CUDA tests do not use default stream by mistake. beforeDevice = torch.cuda.current_device() self.beforeStreams = [] for d in range(torch.cuda.device_count()): self.beforeStreams.append(torch.cuda.current_stream(d)) deviceStream = torch.cuda.Stream(device=d) self.beforeStreams[-1].synchronize() torch._C._cuda_setStream(stream_id=deviceStream.stream_id, device_index=deviceStream.device_index, device_type=deviceStream.device_type) torch._C._cuda_setDevice(beforeDevice) def __exit__(self, exec_type, exec_value, traceback): # After completing CUDA test load previously active streams on all # CUDA devices. beforeDevice = torch.cuda.current_device() for d in range(torch.cuda.device_count()): torch._C._cuda_setStream(stream_id=self.beforeStreams[d].stream_id, device_index=self.beforeStreams[d].device_index, device_type=self.beforeStreams[d].device_type) torch._C._cuda_setDevice(beforeDevice) class CudaMemoryLeakCheck(): def __init__(self, testcase, name=None): self.name = testcase.id() if name is None else name self.testcase = testcase # initialize context & RNG to prevent false positive detections # when the test is the first to initialize those from torch.testing._internal.common_cuda import initialize_cuda_context_rng initialize_cuda_context_rng() # Stores CUDA memory data provided by PyTorch's caching allocator and # the CUDA driver. # # NOTE: The undocumented torch.cuda.mem_get_info() returns # (#free bytes, #total bytes available) on the GPU def __enter__(self): self.caching_allocator_befores = [] self.driver_befores = [] # Performs a gc if required (required if any CUDA memory is held) num_devices = torch.cuda.device_count() for i in range(num_devices): caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) # NOTE: gc is based exclusively on caching allocator memory # because the driver will always have some bytes in use (context size?) if caching_allocator_mem_allocated > 0: gc.collect() torch._C._cuda_clearCublasWorkspaces() torch.cuda.empty_cache() break # Acquires caching allocator and driver statistics before the test is run for i in range(num_devices): self.caching_allocator_befores.append(torch.cuda.memory_allocated(i)) bytes_free, bytes_total = torch.cuda.mem_get_info(i) driver_mem_allocated = bytes_total - bytes_free self.driver_befores.append(driver_mem_allocated) def __exit__(self, exec_type, exec_value, traceback): # Don't check for leaks if an exception was thrown if exec_type is not None: return # Compares caching allocator before/after statistics # An increase in allocated memory is a discrepancy indicating a possible # memory leak discrepancy_detected = False num_devices = torch.cuda.device_count() for i in range(num_devices): # avoid counting cublasWorkspace allocations torch._C._cuda_clearCublasWorkspaces() caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) if caching_allocator_mem_allocated > self.caching_allocator_befores[i]: discrepancy_detected = True break # Short-circuits if no discrepancy detected if not discrepancy_detected: return # Validates the discrepancy persists after garbage collection and # is confirmed by the driver API # NOTE: driver API iscrepancies alone are ignored because with the jiterator # some tests may permanently increase the CUDA context size and # that will appear as a driver memory leak but is the expected behavior. # GCs and clears the cache gc.collect() torch.cuda.empty_cache() for i in range(num_devices): discrepancy_detected = True # Query memory multiple tiems to ensure leak was not transient for n in range(3): caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) bytes_free, bytes_total = torch.cuda.mem_get_info(i) driver_mem_allocated = bytes_total - bytes_free caching_allocator_discrepancy = False driver_discrepancy = False if caching_allocator_mem_allocated > self.caching_allocator_befores[i]: caching_allocator_discrepancy = True if driver_mem_allocated > self.driver_befores[i]: driver_discrepancy = True if not(caching_allocator_discrepancy or driver_discrepancy): # Leak was false positive, exit loop discrepancy_detected = False break if not discrepancy_detected: continue if caching_allocator_discrepancy and not driver_discrepancy: # Just raises a warning if the leak is not validated by the # driver API # NOTE: this may be a problem with how the caching allocator collects its # statistics or a leak too small to trigger the allocation of an # additional block of memory by the CUDA driver msg = ("CUDA caching allocator reports a memory leak not " "verified by the driver API in {}! " "Caching allocator allocated memory was {} and is now reported as {} " "on device {}. " "CUDA driver allocated memory was {} and is now {}.").format( self.name, self.caching_allocator_befores[i], caching_allocator_mem_allocated, i, self.driver_befores[i], driver_mem_allocated) warnings.warn(msg) elif caching_allocator_discrepancy and driver_discrepancy: # A caching allocator discrepancy validated by the driver API is a # failure (except on ROCm, see below) msg = ("CUDA driver API confirmed a leak in {}! " "Caching allocator allocated memory was {} and is now reported as {} " "on device {}. " "CUDA driver allocated memory was {} and is now {}.").format( self.name, self.caching_allocator_befores[i], caching_allocator_mem_allocated, i, self.driver_befores[i], driver_mem_allocated) raise RuntimeError(msg) @contextmanager def skip_exception_type(exc_type): try: yield except exc_type as e: raise unittest.SkipTest(f"not implemented: {e}") from e # "min_satisfying_examples" setting has been deprecated in hypythesis # 3.56.0 and removed in hypothesis 4.x try: import hypothesis def settings(*args, **kwargs): if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0): kwargs.pop('min_satisfying_examples') return hypothesis.settings(*args, **kwargs) hypothesis.settings.register_profile( "pytorch_ci", settings( derandomize=True, suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=50, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "dev", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=10, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "debug", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=1000, verbosity=hypothesis.Verbosity.verbose)) hypothesis.settings.load_profile( "pytorch_ci" if IS_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev') ) except ImportError: print('Fail to import hypothesis in common_utils, tests are not derandomized') # Used in check_if_enable to see if a test method should be disabled by an issue, # sanitizes a test method name from appended suffixes by @dtypes parametrization. # e.g., an issue with title "DISABLED test_bitwise_ops (__main__.TestBinaryUfuncs)" should # disabled ALL parametrized test_bitwise_ops tests, such test_bitwise_ops_cuda_int32 def remove_device_and_dtype_suffixes(test_name: str) -> str: # import statement is localized to avoid circular dependency issues with common_device_type.py from torch.testing._internal.common_device_type import get_device_type_test_bases device_suffixes = [x.device_type for x in get_device_type_test_bases()] dtype_suffixes = [str(dt)[len("torch."):] for dt in get_all_dtypes()] test_name_chunks = test_name.split("_") if len(test_name_chunks) > 0 and test_name_chunks[-1] in dtype_suffixes: if len(test_name_chunks) > 1 and test_name_chunks[-2] in device_suffixes: return "_".join(test_name_chunks[0:-2]) return "_".join(test_name_chunks[0:-1]) return test_name def check_if_enable(test: unittest.TestCase): test_suite = str(test.__class__).split('\'')[1] if "USING_PYTEST" in os.environ: test_suite = f"__main__.{test_suite.split('.')[1]}" raw_test_name = f'{test._testMethodName} ({test_suite})' if raw_test_name in slow_tests_dict: getattr(test, test._testMethodName).__dict__['slow_test'] = True if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") sanitized_test_method_name = remove_device_and_dtype_suffixes(test._testMethodName) if not IS_SANDCASTLE: should_skip = False skip_msg = "" for disabled_test, (issue_url, platforms) in disabled_tests_dict.items(): disable_test_parts = disabled_test.split() if len(disable_test_parts) > 1: disabled_test_name = disable_test_parts[0] disabled_test_suite = disable_test_parts[1][1:-1] # if test method name or its sanitized version exactly matches the disabled test method name # AND allow non-parametrized suite names to disable parametrized ones (TestSuite disables TestSuiteCPU) if (test._testMethodName == disabled_test_name or sanitized_test_method_name == disabled_test_name) \ and disabled_test_suite in test_suite: platform_to_conditional: Dict = { "mac": IS_MACOS, "macos": IS_MACOS, "win": IS_WINDOWS, "windows": IS_WINDOWS, "linux": IS_LINUX, "rocm": TEST_WITH_ROCM, "asan": TEST_WITH_ASAN, "dynamo": TEST_WITH_TORCHDYNAMO, } invalid_platforms = list(filter(lambda p: p not in platform_to_conditional, platforms)) if len(invalid_platforms) > 0: invalid_plats_str = ", ".join(invalid_platforms) valid_plats = ", ".join(platform_to_conditional.keys()) print(f"Test {disabled_test} is disabled for some unrecognized ", f"platforms: [{invalid_plats_str}]. Please edit issue {issue_url} to fix the platforms ", "assigned to this flaky test, changing \"Platforms: ...\" to a comma separated ", f"subset of the following (or leave it blank to match all platforms): {valid_plats}") # Sanitize the platforms list so that we continue to disable the test for any valid platforms given platforms = list(filter(lambda p: p in platform_to_conditional, platforms)) if platforms == [] or any([platform_to_conditional[platform] for platform in platforms]): should_skip = True skip_msg = f"Test is disabled because an issue exists disabling it: {issue_url}" \ f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " \ "If you're seeing this on your local machine and would like to enable this test, " \ "please make sure CI is not set and you are not using the flag --import-disabled-tests." break if should_skip and not RERUN_DISABLED_TESTS: # Skip the disabled test when not running under --rerun-disabled-tests verification mode raise unittest.SkipTest(skip_msg) if not should_skip and RERUN_DISABLED_TESTS: skip_msg = "Test is enabled but --rerun-disabled-tests verification mode is set, so only" \ " disabled tests are run" raise unittest.SkipTest(skip_msg) if TEST_SKIP_FAST: if not getattr(test, test._testMethodName).__dict__.get('slow_test', False): raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST") # `TestCase.assertEqual` is very permissive and coerced the inputs into a format that could be compared. This is very # convenient when writing tests, but not so much while reviewing them. By default, the comparison `Pair` framework of # `torch.testing._comparison.are_equal`, used for example by the public testing function # `torch.testing.assert_close`, is more strict. In order to use the same framework and thus reduce the divergence # between internal and external comparison logic as much as possible, we define some "relaxed" pairs here. They only # change the supported inputs, but the comparison logic is the same. # TODO: Revisit the relaxed pairs and check how much work it is to fix the tests that would fail without the relaxation. class RelaxedBooleanPair(BooleanPair): """Pair for boolean-like inputs. In contrast to the builtin :class:`BooleanPair`, this class also supports one input being a number or a single element tensor-like. """ _supported_number_types = NumberPair(0, 0)._supported_types def _process_inputs(self, actual, expected, *, id): # We require only one of the inputs of the inputs to be a boolean and the other can also be a boolean, a # number, or a single element tensor or array, whereas in default BooleanPair both inputs have to be booleans. tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray) other_supported_types = (*self._supported_types, *self._supported_number_types, *tensor_or_array_types) if not ( (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types)) or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types)) ): self._inputs_not_supported() return [self._to_bool(input, id=id) for input in (actual, expected)] def _to_bool(self, bool_like, *, id): if isinstance(bool_like, np.number): return bool(bool_like.item()) elif type(bool_like) in self._supported_number_types: return bool(bool_like) elif isinstance(bool_like, (torch.Tensor, np.ndarray)): numel = bool_like.numel() if isinstance(bool_like, torch.Tensor) else bool_like.size if numel > 1: self._fail( ValueError, f"Only single element tensor-likes can be compared against a boolean. " f"Got {numel} elements instead.", id=id ) return bool(bool_like.item()) else: return super()._to_bool(bool_like, id=id) class RelaxedNumberPair(NumberPair): """Pair for number-like inputs. In contrast to the builtin :class:`NumberPair`, this class also supports one input being a single element tensor-like or a :class:`enum.Enum`. (D)Type checks are disabled, meaning comparing 1 to 1.0 succeeds even when ``check_dtype=True`` is passed. In addition, this class uses looser default tolerances for :class:`float` and :class:`complex` inputs. Also supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and ``@toleranceOverride`` decorators. """ _TYPE_TO_DTYPE = { int: torch.int64, float: torch.float32, complex: torch.complex64, } def __init__( self, actual, expected, *, rtol_override=0.0, atol_override=0.0, check_dtype=None, **other_parameters ) -> None: super().__init__(actual, expected, check_dtype=False, **other_parameters) self.rtol = max(self.rtol, rtol_override) self.atol = max(self.atol, atol_override) def _process_inputs(self, actual, expected, *, id): # We require only one of the inputs of the inputs to be a number and the other can also be a number or a single # element tensor or array, whereas in default NumberPair both inputs have to be numbers. tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray) other_supported_types = (*self._supported_types, *tensor_or_array_types) if not ( (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types)) or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types)) ): self._inputs_not_supported() return [self._to_number(input, id=id) for input in (actual, expected)] def _to_number(self, number_like, *, id): if isinstance(number_like, (torch.Tensor, np.ndarray)): numel = number_like.numel() if isinstance(number_like, torch.Tensor) else number_like.size if numel > 1: self._fail( ValueError, f"Only single element tensor-likes can be compared against a number. " f"Got {numel} elements instead.", id=id ) number = number_like.item() if isinstance(number, bool): number = int(number) return number elif isinstance(number_like, Enum): return int(number_like) # type: ignore[call-overload] else: return super()._to_number(number_like, id=id) class TensorOrArrayPair(TensorLikePair): """Pair for tensor-like inputs. On the one hand this class is stricter than the builtin :class:`TensorLikePair` since it only allows instances of :class:`torch.Tensor` and :class:`numpy.ndarray` rather than allowing any tensor-like than can be converted into a tensor. On the other hand this class is looser since it converts all inputs into tensors with no regard of their relationship, e.g. comparing a :class:`torch.Tensor` to :class:`numpy.ndarray` is fine. In addition, this class supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and ``@toleranceOverride`` decorators. """ def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters): super().__init__(actual, expected, **other_parameters) self.rtol = max(self.rtol, rtol_override) self.atol = max(self.atol, atol_override) def _process_inputs(self, actual, expected, *, id, allow_subclasses): self._check_inputs_isinstance(actual, expected, cls=(torch.Tensor, np.ndarray)) actual, expected = [self._to_tensor(input) for input in (actual, expected)] for tensor in (actual, expected): self._check_supported(tensor, id=id) return actual, expected class TypedStoragePair(TensorLikePair): """Pair for :class:`torch.storage.TypedStorage` inputs.""" def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters): self._check_inputs_isinstance(actual, expected, cls=torch.storage.TypedStorage) super().__init__(actual, expected, **other_parameters) self.rtol = max(self.rtol, rtol_override) self.atol = max(self.atol, atol_override) def _to_tensor(self, typed_storage): return torch.tensor( typed_storage._untyped_storage, dtype={ torch.quint8: torch.uint8, torch.quint4x2: torch.uint8, torch.quint2x4: torch.uint8, torch.qint32: torch.int32, torch.qint8: torch.int8 }.get(typed_storage.dtype, typed_storage.dtype), device=typed_storage.device, ) class UnittestPair(Pair): """Fallback ABC pair that handles non-numeric inputs. To avoid recreating the mismatch messages of :meth:`unittest.TestCase.assertEqual`, this pair simply wraps it in order to use it with the :class:`Pair` "framework" from :func:`are_equal`. Define the :attr:`UnittestPair.CLS` in a subclass to indicate which class(es) of the inputs the pair should support. """ CLS: Union[Type, Tuple[Type, ...]] TYPE_NAME: Optional[str] = None def __init__(self, actual, expected, **other_parameters): self._check_inputs_isinstance(actual, expected, cls=self.CLS) super().__init__(actual, expected, **other_parameters) def compare(self): test_case = unittest.TestCase() try: return test_case.assertEqual(self.actual, self.expected) except test_case.failureException as error: msg = str(error) type_name = self.TYPE_NAME or (self.CLS if isinstance(self.CLS, type) else self.CLS[0]).__name__ self._fail(AssertionError, f"{type_name.title()} comparison failed: {msg}") class StringPair(UnittestPair): CLS = str TYPE_NAME = "string" class SetPair(UnittestPair): CLS = set class TypePair(UnittestPair): CLS = type class ObjectPair(UnittestPair): CLS = object # This implements a variant of assertRaises/assertRaisesRegex where we first test # if the exception is NotImplementedError, and if so just skip the test instead # of failing it. # # This is implemented by inheriting from the (private) implementation of # assertRaises from unittest.case, and slightly tweaking it for this new # behavior. The year is 2021: this private class hierarchy hasn't changed since # 2010, seems low risk to inherit from. class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext): def __exit__(self, exc_type, exc_value, tb): if exc_type is not None and issubclass(exc_type, NotImplementedError): self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined] return super().__exit__(exc_type, exc_value, tb) @contextmanager def set_warn_always_context(new_val: bool): old_val = torch.is_warn_always_enabled() torch.set_warn_always(new_val) try: yield finally: torch.set_warn_always(old_val) class TestCase(expecttest.TestCase): # NOTE: "precision" lets classes and generated tests set minimum # atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for # example. # NOTE: "rel_tol" lets classes and generated tests set minimum # rtol values when comparing tensors. Used by @toleranceOverride, for example. _precision: float = 0 _rel_tol: float = 0 # checker to early terminate test suite if unrecoverable failure occurs. def _should_stop_test_suite(self): if torch.cuda.is_initialized(): # CUDA device side error will cause subsequence test cases to fail. # stop entire test suite if catches RuntimeError during torch.cuda.synchronize(). try: torch.cuda.synchronize() except RuntimeError as rte: print("TEST SUITE EARLY TERMINATION due to torch.cuda.synchronize() failure", file=sys.stderr) return True return False else: return False @property def precision(self) -> float: return self._precision @precision.setter def precision(self, prec: float) -> None: self._precision = prec @property def rel_tol(self) -> float: return self._rel_tol @rel_tol.setter def rel_tol(self, prec: float) -> None: self._rel_tol = prec _do_cuda_memory_leak_check = False _do_cuda_non_default_stream = False # When True, if a test case raises a NotImplementedError, instead of failing # the test, skip it instead. _ignore_not_implemented_error = False def __init__(self, method_name='runTest'): super().__init__(method_name) test_method = getattr(self, method_name, None) if test_method is not None: # Wraps the tested method if we should do CUDA memory check. if TEST_CUDA_MEM_LEAK_CHECK: self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 if self._do_cuda_memory_leak_check and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors) # Wraps the tested method if we should enforce non default CUDA stream. self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True) if self._do_cuda_non_default_stream and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream) if self._ignore_not_implemented_error: self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError)) def assertLeaksNoCudaTensors(self, name=None): name = self.id() if name is None else name return CudaMemoryLeakCheck(self, name) def enforceNonDefaultStream(self): return CudaNonDefaultStream() def wrap_with_cuda_policy(self, method_name, policy): test_method = getattr(self, method_name) # the import below may initialize CUDA context, so we do it only if # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream # is True. # TODO: sure looks like we unconditionally initialize the context here # -- ezyang from torch.testing._internal.common_cuda import TEST_CUDA fullname = self.id().lower() # class_name.method_name if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) def wrap_with_policy(self, method_name, policy): test_method = getattr(self, method_name) setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) # A policy is a zero-argument function that returns a context manager. # We don't take the context manager directly as it may be necessary to # construct it once per test method def wrap_method_with_policy(self, method, policy): # Assumes that `method` is the tested function in `self`. # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope # alive, so this cannot be done in setUp and tearDown because # tearDown is run unconditionally no matter whether the test # passes or not. For the same reason, we can't wrap the `method` # call in try-finally and always do the check. @wraps(method) def wrapper(self, *args, **kwargs): with policy(): method(*args, **kwargs) return types.MethodType(wrapper, self) def wrap_with_cuda_memory_check(self, method): return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors) # Recursive function that incorporates retry logic when PYTORCH_RETRY_TEST_CASES=1 and enables early test # termination. [DISCLAIMER: ONLY WORKS WITH UNITTEST] # When report_only is True, flaky tests are only reported, but the signal remains the same (the test will still # show up red). # Otherwise, the flaky test will show up green while its stats are captured by test reports. def _run_with_retry(self, result=None, num_runs_left=0, report_only=True, num_red=0, num_green=0): using_unittest = isinstance(result, unittest.TestResult) if num_runs_left == 0: # The logic when RERUN_DISABLED_TESTS is set to true is as follows: # |-if the disabled test passes: # |-- if it's flaky: # |--- Do nothing because it's still flaky # |-- elif it isn't flaky anymore: # |--- Close the disabled ticket (later) # | # |- elif the disabled test fails after n retries: # |-- This is expected, report this but don't fail the job skipped_msg = { "num_red": num_red, "num_green": num_green, "max_num_retries": MAX_NUM_RETRIES, "rerun_disabled_test": RERUN_DISABLED_TESTS, } traceback_str = "" if RERUN_DISABLED_TESTS and using_unittest: # Hide all failures and errors when RERUN_DISABLED_TESTS is enabled. This is # a verification check, we don't want more red signals coming from it if result.failures: _, traceback_str = result.failures.pop(-1) if result.errors: _, traceback_str = result.errors.pop(-1) if traceback_str: skipped_msg["traceback_str"] = traceback_str if num_green == 0: # The disabled test fails, report as skipped but don't fail the job result.addSkip(self, json.dumps(skipped_msg)) if num_red == 0: # The test passes after re-running multiple times. This acts as a signal # to confirm that it's not flaky anymore result.addSuccess(self) if num_green > 0 and num_red > 0 and using_unittest: skipped_msg["flaky"] = True # Still flaky, do nothing result.addSkip(self, json.dumps(skipped_msg)) return if using_unittest: # Keep track of the number of tests marked as failures, errors, and skipped before starting failures_before = 0 if result is None else len(result.failures) errors_before = 0 if result is None else len(result.errors) skipped_before = 0 if result is None else len(result.skipped) # TODO remove version check once dynamo supports 3.11 if TEST_WITH_TORCHDYNAMO and sys.version_info < (3, 11): # TorchDynamo optimize annotation if TEST_WITH_TORCHINDUCTOR: super_run = torch._dynamo.optimize("inductor")(super().run) else: super_run = torch._dynamo.optimize("eager")(super().run) super_run(result=result) # TODO - Reset for each test slows down testing significantly. # torch._dynamo.reset() else: super().run(result=result) # Early terminate test if necessary. if self._should_stop_test_suite(): if result.wasSuccessful(): case = TestCase() if TEST_SAVE_XML is not None: # This is a big hacky, XMLRunner modifies expected type from TestCase to TestInfo # Create dummy TestInfo to record results correctly from xmlrunner.result import _TestInfo # type: ignore[import] case = _TestInfo(result, case) case.output = _TestInfo.ERROR case.elapsed_time = 0.0 case.test_description = "TestSuiteEarlyFailure" # This shouldn't really happen, but if does add fake failure # For more details see https://github.com/pytorch/pytorch/issues/71973 result.failures.append((case, "TestSuite execution was aborted early")) assert result.wasSuccessful() is False result.stop() if not RETRY_TEST_CASES or not using_unittest: return err = sys.exc_info() num_retries_left = num_runs_left - 1 if failures_before < len(result.failures): print(f" {self._testMethodName} failed - num_retries_left: {num_retries_left}") if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0): _, traceback_str = result.failures.pop(-1) print(traceback_str) result.addExpectedFailure(self, err) self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only, num_red=num_red + 1, num_green=num_green) elif errors_before < len(result.errors): print(f" {self._testMethodName} errored - num_retries_left: {num_retries_left}") if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0): _, traceback_str = result.errors.pop(-1) print(traceback_str) result.addExpectedFailure(self, err) self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only, num_red=num_red + 1, num_green=num_green) elif RERUN_DISABLED_TESTS and num_retries_left <= MAX_NUM_RETRIES and skipped_before == len(result.skipped): # Always re-run up to MAX_NUM_RETRIES when running under rerun disabled tests modes if the test successes. # The parameter num_retries_left can be equal to MAX_NUM_RETRIES here because num_runs_left is initially # set to MAX_NUM_RETRIES + 1, i.e. the first run successes # # Also if the result is skipped, this is due to check_if_enable skipping non-disabled tests, thus we # want to ignore them, not retrying and skipping multiple times print(f" {self._testMethodName} succeeded - num_retries_left: {num_retries_left}") result.addSuccess(self) self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only, num_red=num_red, num_green=num_green + 1) elif report_only and num_retries_left < MAX_NUM_RETRIES: # The original logic here is that num_retries_left must be smaller than MAX_NUM_RETRIES indicating # that at least one retry has been spent print(f" {self._testMethodName} succeeded - num_retries_left: {num_retries_left}") result.addUnexpectedSuccess(self) self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only, num_red=num_red, num_green=num_green + 1) elif not report_only and num_retries_left < MAX_NUM_RETRIES: # in this case, our test was rerun (as a retry has been used) and it just passed. # we incur one more recursive call with num_runs_left = 0 to allow for accurate flaky reporting self._run_with_retry(result=result, num_runs_left=0, report_only=report_only, num_red=num_red, num_green=num_green + 1) def run(self, result=None): with contextlib.ExitStack() as stack: if TEST_WITH_CROSSREF: stack.enter_context(CrossRefMode()) num_runs = MAX_NUM_RETRIES + 1 if RETRY_TEST_CASES else 1 self._run_with_retry( result=result, num_runs_left=num_runs, report_only=not OVERRIDE_FLAKY_SIGNAL, num_red=0, num_green=0) def setUp(self): check_if_enable(self) set_rng_seed(SEED) # Save global check sparse tensor invariants state that can be # restored from tearDown: self._check_invariants = torch.sparse.check_sparse_tensor_invariants.is_enabled() # Enable invariant checks for all sparse tensors constructions # including the unsafe ones. If this is not desired for some # test case, use check_invariants=False optional argument to # sparse tensor constructors or # @torch.sparse.check_sparse_tensor_invariants(False) # decorator to disable the invariant checks. torch.sparse.check_sparse_tensor_invariants.enable() def tearDown(self): # There exists test cases that override TestCase.setUp # definition, so we cannot assume that _check_invariants # attribute is defined in general. if hasattr(self, '_check_invariants'): # Restore the global check sparse tensor invariants state if self._check_invariants: torch.sparse.check_sparse_tensor_invariants.enable() else: torch.sparse.check_sparse_tensor_invariants.disable() @staticmethod def _make_crow_indices(n_rows, n_cols, nnz, *, device, dtype, random=True): """Return crow_indices of a CSR tensor with size (n_rows, n_cols) and the number of specified elements nnz. If random is True, the column counts of rows are in random order. Otherwise, the column counts of rows are defined by the used sampling method. Sampling method --------------- The used sampling method was introduced in https://pearu.github.io/csr_sampling.html, and here we give only an overall description of the method. Notice that crow_indices can be defined as cumsum(counts) where counts is a sequence of non-negative integers satisfying the following conditions: len(counts) == n_rows + 1 counts.max() <= n_cols while counts[i + 1] is interpreted as the number of specified elements in the i-th row. The used sampling method aims at increasing the diversity of CSR samples, that is, a CSR sample should contain (i) rows that are all filled, (ii) rows with no elements at all, and (iii) rows that are partially filled. At the same time and for the given total number of specified elements (nnz), there should be minimal preference to rows with a given number of elements. To achieve this, the sampling method is built-up on using a sawteeth model for counts. In the simplest case, we would have counts = arange(n_rows + 1) % (n_cols + 1) that has equal number of all possible column counts per row. This formula can be used only for specific input values of n_rows, n_cols, and nnz. To generalize this model to any combinations of inputs, the counts model above is extended with an incomplete sawtooth, and the right and lower rectangular parts that will guarantee that counts.sum() == nnz for any combination of n_rows, n_cols, and nnz. Basically, we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid that is able to hold a sequence of sawteeth and so-called final correction, while the external part of the window is filled with counts to meet the nnz contraint exactly. """ assert 0 <= nnz <= n_rows * n_cols, (nnz, n_rows, n_cols) def sawteeth(n, m): # return the total number of counts in the sequence of # sawteeth where n and m define a window in (n_rows+1, # n_cols+1) rectangle where the sequence of sawteeth # perfectly fit. M = (n_cols - m) * (n_cols - m + 1) // 2 K = (n_rows - n) % (n_cols - m + 1) return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2 # Different from the original method description, here counts # has leading 0 required by crow_indices: counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu')) n = m = 0 N = sawteeth(n, m) if N and nnz >= max(N, n_cols): # determine the width of the sawteeth window. We use bisection to solve # N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols) # for n n_left = n n_right = n_rows - 1 N_right = sawteeth(n_right, m) while n_right - n_left > 1: n_middle = (n_left + n_right) // 2 N_middle = sawteeth(n_middle, m) if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols): n_right, N_right = n_middle, N_middle else: n_left = n_middle n, N = n_right, N_right # fill the right rectangle with counts: assert n counts[-n:].fill_(n_cols) if N and nnz - n * n_cols >= max(N, n_rows - n): # determine the height of the sawteeth window. We use bisection to solve # N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n) # for m. m_left = m m_right = n_cols - 1 N_right = sawteeth(n, m_right) while m_right - m_left > 1: m_middle = (m_left + m_right) // 2 N_middle = sawteeth(n, m_middle) if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n): m_right, N_right = m_middle, N_middle else: m_left = m_middle m, N = m_right, N_right # fill the bottom rectangle with counts: assert m counts[1:n_rows - n + 1].fill_(m) if N: # fill the sawteeth window with counts q, r = divmod(nnz - n * n_cols - m * (n_rows - n), (n_cols - m) * (n_cols - m + 1) // 2) p = 1 + q * (n_cols - m + 1) k = math.isqrt(2 * r) if k * (k + 1) > 2 * r: k -= 1 corr = r - k * (k + 1) // 2 assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle # sequence of full sawteeth: counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1) # incomplete sawtooth: counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device) else: # given input does not support sawteeth p = 1 corr = nnz - n * n_cols - m * (n_rows - n) # correction that will guarantee counts.sum() == nnz: counts[p] += corr if random: # randomize crow_indices by shuffling the sawteeth # sequence: perm = torch.randperm(n_rows, device=counts.device) counts[1:] = counts[1:][perm] # compute crow_indices: crow_indices = counts crow_indices.cumsum_(dim=0) return crow_indices.to(device=device) def genSparseCompressedTensor(self, size, nnz, *, layout, device, dtype, index_dtype, blocksize=(), dense_dims=0): from operator import mul from functools import reduce sparse_dim = 2 assert all(size[d] > 0 for d in range(len(size))) or nnz == 0, 'invalid arguments' assert len(size) >= sparse_dim if blocksize: assert len(blocksize) == 2, (size, blocksize) assert size[-2 - dense_dims] % blocksize[0] == 0, (size, blocksize) assert size[-1 - dense_dims] % blocksize[1] == 0, (size, blocksize) blocksize0, blocksize1 = blocksize else: blocksize0 = blocksize1 = 1 size = tuple(size) dense_size = size[(len(size) - dense_dims):] def random_sparse_compressed(n_compressed_dims, n_plain_dims, nnz): compressed_indices = self._make_crow_indices(n_compressed_dims, n_plain_dims, nnz, device=device, dtype=index_dtype) plain_indices = torch.zeros(nnz, dtype=index_dtype, device=device) for i in range(n_compressed_dims): count = compressed_indices[i + 1] - compressed_indices[i] plain_indices[compressed_indices[i]:compressed_indices[i + 1]], _ = torch.sort( torch.randperm(n_plain_dims, dtype=index_dtype, device=device)[:count]) low = -1 if dtype != torch.uint8 else 0 high = 1 if dtype != torch.uint8 else 2 values = make_tensor((nnz,) + blocksize + dense_size, device=device, dtype=dtype, low=low, high=high) return values, compressed_indices, plain_indices batch_shape = size[:-2 - dense_dims] n_batch = reduce(mul, batch_shape, 1) if layout in {torch.sparse_csr, torch.sparse_bsr}: n_compressed_dims, n_plain_dims = size[-2 - dense_dims] // blocksize0, size[-1 - dense_dims] // blocksize1 else: n_compressed_dims, n_plain_dims = size[-1 - dense_dims] // blocksize1, size[-2 - dense_dims] // blocksize0 blocknnz = nnz // (blocksize0 * blocksize1) sparse_tensors = [random_sparse_compressed(n_compressed_dims, n_plain_dims, blocknnz) for _ in range(n_batch)] sparse_tensors_it = map(list, zip(*sparse_tensors)) values = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, blocknnz, *blocksize, *dense_size) compressed_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1) plain_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1) return torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size=size, dtype=dtype, layout=layout, device=device) def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0): return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csr, device=device, dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=dense_dims) def genSparseCSCTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0): return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csc, device=device, dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=0) def genSparseBSRTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0): assert len(blocksize) == 2 return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsr, device=device, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims) def genSparseBSCTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0): assert len(blocksize) == 2 return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsc, device=device, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims) def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype): # Assert not given impossible combination, where the sparse dims have # empty numel, but nnz > 0 makes the indices containing values. assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' v_size = [nnz] + list(size[sparse_dim:]) v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1) i = torch.rand(sparse_dim, nnz, device=device) i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) i = i.to(torch.long) if is_uncoalesced: i1 = i[:, :(nnz // 2), ...] i2 = i[:, :((nnz + 1) // 2), ...] i = torch.cat([i1, i2], 1) x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device) if not is_uncoalesced: x = x.coalesce() else: # FIXME: `x` is a sparse view of `v`. Currently rebase_history for # sparse views is not implemented, so this workaround is # needed for inplace operations done on `x`, e.g., copy_(). # Remove after implementing something equivalent to CopySlice # for sparse views. # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards x = x.detach().clone()._coalesced_(False) return x, x._indices().clone(), x._values().clone() def generate_simple_inputs(self, layout, device=None, dtype=None, index_dtype=None, enable_batch=True, enable_hybrid=True, enable_zero_sized=True, enable_non_contiguous_indices=True, enable_non_contiguous_values=True, enable_batch_variable_nse=False, output_tensor=True, patterns=None): """Generator of simple inputs for tensor constructors of the given layout. The generated tensor inputs have the following properties: - tensor shapes are minimal but not trivial - tensor values are sorted sequences for COO and CSR formats, e.g. [1, 2, 3, 4] - the generated tensors represent the same mathematical tensor for all layouts - the generated tensors include regular, zero-sized, and optionally, batched or/and hybrid tensors. - the generated tensors include contiguous or non-contiguous tensors both in indices and values If output_tensor is True, yield tensors with the given layout. Otherwise, yield inputs to the corresponding tensor constructors: - sparse compressed input is defined as (compressed_indices, plain_indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype) - sparse COO input is defined as (indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype) - strided input is defined as (values,), dict(device=device, dtype=dtype) """ if index_dtype is None: index_dtype = torch.int64 is_compressed_sparse_layout = layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} if output_tensor: for args, kwargs in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype, enable_batch=enable_batch, enable_hybrid=enable_hybrid, enable_zero_sized=enable_zero_sized, enable_non_contiguous_indices=enable_non_contiguous_indices, enable_non_contiguous_values=enable_non_contiguous_values, enable_batch_variable_nse=enable_batch_variable_nse, output_tensor=False): if layout is torch.strided: assert len(args) == 1 size = kwargs.pop('size', None) # to ensure that a zero-sized tensor has the desired shape assert size is not None yield args[0].reshape(size) elif layout is torch.sparse_coo: yield torch.sparse_coo_tensor(*args, **kwargs) elif is_compressed_sparse_layout: kwargs.update(layout=layout) yield torch.sparse_compressed_tensor(*args, **kwargs) else: assert 0 # unreachable return def get_blockpattern(pattern, blocksize): basesize = pattern.shape assert basesize[0] % blocksize[0] == 0, (basesize, blocksize) assert basesize[1] % blocksize[1] == 0, (basesize, blocksize) blockpattern = pattern.reshape(-1, blocksize[0], basesize[1] // blocksize[1], blocksize[1]).transpose(-3, -2).any(-1).any(-1) block_ids = torch.arange(1, blockpattern.numel() + 1).reshape(blockpattern.shape) return (blockpattern != 0) * block_ids def get_sparse_data(pattern): basesize = pattern.shape assert len(basesize) == 2, basesize # pattern is expected to be a matrix # We cannot use `torch.sparse_xyz_tensor(pattern)` to # compute the sparse layout indices and values because # generate_simple_inputs is used to generate the inputs to # test `torch.sparse_xyz_tensor` factory functions, so # we'll compute the indices and values independently of # the factory functions. indices = torch.where(pattern != 0) coo_indices = torch.stack(indices) crow_indices = torch.zeros(basesize[0] + 1, dtype=torch.int64) crow_indices[1:] = torch.cumsum(coo_indices[0].bincount(minlength=basesize[0]), 0) col_indices = coo_indices[1] strided_values = torch.zeros(basesize, dtype=torch.int64) # the property of `values == range(1, 1+nnz)` is used in # get_sparse_data_with_block to relate BSR and BSC values, # so, don't change the following line: values = torch.arange(1, 1 + len(indices[0]), dtype=torch.int64) strided_values[indices] = values indices_T = torch.where(pattern.transpose(0, 1) != 0) coo_indices_T = torch.stack(indices_T) ccol_indices = torch.zeros(basesize[1] + 1, dtype=torch.int64) ccol_indices[1:] = torch.cumsum(coo_indices_T[0].bincount(minlength=basesize[1]), 0) row_indices = coo_indices_T[1] csc_values = strided_values.transpose(0, 1)[indices_T] return {torch.sparse_coo: (coo_indices, values), torch.sparse_csr: (crow_indices, col_indices, values), torch.sparse_csc: (ccol_indices, row_indices, csc_values), torch.strided: (strided_values,)} def get_sparse_data_with_block(pattern, blocksize): nonblock_data = get_sparse_data(pattern) blockpattern = get_blockpattern(pattern, blocksize) block_data = get_sparse_data(blockpattern) strided_values = nonblock_data[torch.strided][0] block_indices = block_data[torch.sparse_coo][0] bsr_values = torch.stack([strided_values[bi * blocksize[0]:(bi + 1) * blocksize[0], bj * blocksize[1]:(bj + 1) * blocksize[1]] for bi, bj in block_indices.transpose(0, 1)]) # here we use the property `values == range(1, 1+nnz)` and # `values` relation to `csc_values` (see get_sparse_data) # to get BSC blocks via reordering the BSR blocks: bsc_values = bsr_values[block_data[torch.sparse_csc][2] - 1] return {torch.sparse_bsr: (*block_data[torch.sparse_csr][:2], bsr_values), torch.sparse_bsc: (*block_data[torch.sparse_csc][:2], bsc_values), **nonblock_data} def get_batch_sparse_data(pattern, blocksize): size = pattern.shape if len(size) <= 2: # non-batch return get_sparse_data_with_block(pattern, blocksize) # batch data is created recursively: batch_data = {} for i, item in enumerate(pattern): for layout, d in get_batch_sparse_data(item, blocksize).items(): target = batch_data.get(layout) if layout is torch.sparse_coo: # a "batch COO" means a COO with the leading # sparse dimensions interpreted as batch # dimensions ext_coo_indices1 = torch.cat((torch.full((1, len(d[1])), i, dtype=torch.int64), d[0])) if target is None: target = batch_data[layout] = (ext_coo_indices1, d[1]) else: target[0].set_(torch.cat((target[0], ext_coo_indices1), 1)) target[1].set_(torch.cat((target[1], d[1]))) else: if target is None: target = batch_data[layout] = tuple(d[j].unsqueeze(0) for j in range(len(d))) else: for j in range(len(d)): target[j].set_(torch.cat((target[j], d[j].unsqueeze(0)))) return batch_data def generate_values(base, densesize): """Generates a tensor of shape densesize with values equal to base + i_1 * 10^0 + ... + i_d * 10^{d - 1} at indices i_1, ..., i_d (with 0 <= i_j < densesize[j] for any 1 <= j <= len(densesize)) This mapping produces unique values as long as densesize[i] < 10 for all i in range(len(densesize)). """ if not densesize: return base if not isinstance(base, int) and base.ndim > 0: return torch.stack([generate_values(b, densesize) for b in base]) if base == 0: return torch.zeros(densesize, dtype=torch.int64) r = torch.arange(densesize[0], dtype=torch.int64) for i, d in enumerate(densesize[1:]): y = torch.arange(d, dtype=torch.int64) * (10 ** (i + 1)) r = r[..., None] + y[None, ...] r.add_(base) return r if patterns is None: # A pattern is a 3-tuple with the following items: # # - a list of integers with the depth of two or more. The # integers define the sparsity patterns of the generated # inputs: zero values correspond to unspecified # elements/blocks, and non-zero values to the specified # elements. # # For debugging convenience, the elements with the same # value typically belong to the same block. However, it # is not a hard requirement: as long as the shape of a # pattern divides with block sizes, the pattern will be # a valid one. # # If the depth of the list is larger than two, inputs # with batch dimensions will be generated. # # - a list of 2-tuples of block sizes, used to generate # BSR/BSC tensors with various block size parameters # # - a list of tuples of dense dimensions, used to generate # hybrid tensors with various dense dimensions # patterns = [ # a simple 3 x 2 tensor: non-hybrid, hybrid with 1 and 2 dense dimensions ([[1, 2, 0], [1, 0, 3]], [(2, 1), (1, 3)], [(), (2,), (4, 5)]), # 2 x 3 batch of 3 x 2 tensors: non-hybrid and hybrid with 2 dense dimensions ([[[[1, 2, 0], [1, 0, 3]], [[1, 2, 3], [1, 0, 0]], [[1, 0, 0], [1, 2, 3]]], [[[0, 2, 0], [1, 2, 3]], [[1, 0, 3], [1, 2, 0]], [[1, 2, 3], [0, 2, 0]]]], [(2, 1), (2, 3)], [(), (2,)]), # tensor with non-trivial blocksize ([[0, 1, 0, 2, 0, 2], [0, 1, 0, 0, 2, 0], [3, 3, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 5, 0, 6, 6, 6], [5, 0, 5, 6, 6, 6], [0, 0, 0, 0, 8, 8], [7, 7, 7, 0, 8, 8]], [(2, 3)], [(), (4, 5)]), # batch tensor with variable NSE # Requires https://github.com/pytorch/pytorch/pull/84843 or similar. ([[[1, 2], [3, 4]], [[1, 0], [0, 0]]], [(1, 1)], ([()] if enable_batch_variable_nse else []))] def non_contiguous_copy(t, dim=-1, offset=0): # return a copy of t that is non-contiguous along the # given dimension and with the given storage offset self.assertTrue(t.is_contiguous()) if dim < 0: dim = dim + t.ndim assert dim >= 0 and dim < t.ndim step = max(2, offset + 1) tmp = torch.zeros((*t.shape[:dim], t.shape[dim] * step, *t.shape[dim + 1:]), dtype=t.dtype, device=t.device) dim_slices = (*((slice(None),) * dim), slice(offset, None, step)) r = tmp[dim_slices].copy_(t) self.assertFalse(r.is_contiguous()) self.assertEqual(t, r) return r # the main loop of the method: for pattern, blocksizes, densesizes in patterns: if not enable_hybrid: densesizes = [s for s in densesizes if not s] if not (densesizes and blocksizes): continue pattern = torch.tensor(pattern, dtype=torch.int64) if not enable_batch and pattern.ndim > 2: continue for blocksize in blocksizes: data = get_batch_sparse_data(pattern, blocksize)[layout] for densesize in densesizes: indices = [a.to(device=device, dtype=index_dtype) for a in data[:-1]] values = generate_values(data[-1], densesize).to(device=device, dtype=dtype) yield (*indices, values), dict(device=device, dtype=dtype, size=pattern.shape + densesize) if enable_non_contiguous_indices and pattern.ndim > 2: # sparse compressed indices can be sliced only along batch dimensions for (dim, offset) in {(0, 1), (-2, 0)}: indices_copy = [non_contiguous_copy(a, dim=dim, offset=offset) for a in indices] yield (*indices_copy, values), dict(device=device, dtype=dtype, size=pattern.shape + densesize) if enable_non_contiguous_values: values_copy = non_contiguous_copy(values, dim=-1, offset=1) yield (*indices_copy, values_copy), dict(device=device, dtype=dtype, size=pattern.shape + densesize) if enable_non_contiguous_values: values_copy = non_contiguous_copy(values, dim=-1, offset=1) yield (*indices, values_copy), dict(device=device, dtype=dtype, size=pattern.shape + densesize) # zero-sized tensor inputs, non-batch, non-hybrid/hybrid if enable_zero_sized: for basesize, blocksizes, densesizes in [ ((2, 0), [(1, 2)], [(), (2,), (2, 3)] if enable_hybrid else [()]), ((0, 2), [(1, 2), (2, 1), (3, 2)], [()]), ((0, 0), [(1, 2)], [()]), ]: for blocksize in blocksizes: for densesize in densesizes: if layout == torch.strided: indices = () values = torch.empty((basesize + densesize), device=device, dtype=dtype) elif layout == torch.sparse_coo: indices = (torch.empty(len(basesize), 0, device=device, dtype=index_dtype),) values = torch.empty((0, *densesize), device=device, dtype=dtype) elif layout == torch.sparse_csr: crow_indices = torch.tensor([0] * (basesize[0] + 1), device=device, dtype=index_dtype) col_indices = torch.empty(0, device=device, dtype=index_dtype) indices = (crow_indices, col_indices) values = torch.empty((0, *densesize), device=device, dtype=dtype) elif layout == torch.sparse_csc: ccol_indices = torch.tensor([0] * (basesize[1] + 1), device=device, dtype=index_dtype) row_indices = torch.empty(0, device=device, dtype=index_dtype) indices = (ccol_indices, row_indices) values = torch.empty((0, *densesize), device=device, dtype=dtype) elif layout == torch.sparse_bsr: crow_indices = torch.tensor([0] * (basesize[0] // blocksize[0] + 1), device=device, dtype=index_dtype) col_indices = torch.empty(0, device=device, dtype=index_dtype) indices = (crow_indices, col_indices) values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype) elif layout == torch.sparse_bsc: ccol_indices = torch.tensor([0] * (basesize[1] // blocksize[1] + 1), device=device, dtype=index_dtype) row_indices = torch.empty(0, device=device, dtype=index_dtype) indices = (ccol_indices, row_indices) values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype) else: assert 0 # unreachable yield (*indices, values), dict(device=device, dtype=dtype, size=basesize + densesize) def safeToDense(self, t): # coalesce is only implemented for COO if t.layout == torch.sparse_coo: t = t.coalesce() return t.to_dense() # Compares a torch function with a reference function for a given sample input (object of SampleInput) # Note: only values are compared, type comparison is not done here def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs): numpy_sample = sample_input.numpy() n_inp, n_args, n_kwargs = numpy_sample.input, numpy_sample.args, numpy_sample.kwargs t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs actual = torch_fn(t_inp, *t_args, **t_kwargs) expected = ref_fn(n_inp, *n_args, **n_kwargs) self.assertEqual(actual, expected, exact_device=False, **kwargs) # Compares the given Torch and NumPy functions on the given tensor-like object. # NOTE: both torch_fn and np_fn should be functions that take a single # tensor (array). If the torch and/or NumPy function require additional # arguments then wrap the function in a lambda or pass a partial function. # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol) def compare_with_numpy(self, torch_fn, np_fn, tensor_like, device=None, dtype=None, **kwargs): assert TEST_NUMPY if isinstance(tensor_like, torch.Tensor): assert device is None assert dtype is None t_cpu = tensor_like.detach().cpu() if t_cpu.dtype is torch.bfloat16: t_cpu = t_cpu.float() a = t_cpu.numpy() t = tensor_like else: d = copy.copy(torch_to_numpy_dtype_dict) d[torch.bfloat16] = np.float32 a = np.array(tensor_like, dtype=d[dtype]) t = torch.tensor(tensor_like, device=device, dtype=dtype) np_result = np_fn(a) torch_result = torch_fn(t).cpu() # Converts arrays to tensors if isinstance(np_result, np.ndarray): try: np_result = torch.from_numpy(np_result) except Exception: # NOTE: copying an array before conversion is necessary when, # for example, the array has negative strides. np_result = torch.from_numpy(np_result.copy()) if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float: torch_result = torch_result.to(torch.float) self.assertEqual(np_result, torch_result, **kwargs) def assertEqualIgnoreType(self, *args, **kwargs) -> None: # If you are seeing this function used, that means test is written wrongly # and deserves detailed investigation return self.assertEqual(*args, exact_dtype=False, **kwargs) def assertEqualBroadcasting(self, x, y, *args, **kwargs) -> None: r"""Tests if tensor x equals to y, if y to be broadcast to x.shape. """ if not isinstance(y, Iterable): # int, float, etc. or different shape tensors y = torch.ones_like(x) * y if not isinstance(y, torch.Tensor): # iterable, but not a tensor y = torch.ones_like(x) * torch.tensor(y) return self.assertEqual(x, y, *args, **kwargs) def assertEqual( self, x, y, msg: Optional[Union[str, Callable[[str], str]]] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, equal_nan=True, exact_dtype=True, # TODO: default this to True exact_device=False, exact_layout=False, exact_stride=False, exact_is_coalesced=False ): # Hide this function from `pytest`'s traceback __tracebackhide__ = True # numpy's dtypes are a superset of what PyTorch supports. In case we encounter an unsupported dtype, we fall # back to an elementwise comparison. Note that this has to happen here and not for example in # `TensorOrArrayPair`, since at that stage we can no longer split the array into its elements and perform # multiple comparisons. if any( isinstance(input, np.ndarray) and not has_corresponding_torch_dtype(input.dtype) for input in (x, y) ): def to_list(input): return input.tolist() if isinstance(input, (torch.Tensor, np.ndarray)) else list(input) x = to_list(x) y = to_list(y) # When comparing a sequence of numbers to a tensor, we need to convert the sequence to a tensor here. # Otherwise, the pair origination of `are_equal` will fail, because the sequence is recognized as container # that should be checked elementwise while the tensor is not. elif isinstance(x, torch.Tensor) and isinstance(y, Sequence): y = torch.as_tensor(y, dtype=x.dtype, device=x.device) elif isinstance(x, Sequence) and isinstance(y, torch.Tensor): x = torch.as_tensor(x, dtype=y.dtype, device=y.device) # If x or y are tensors and nested then we unbind them to a list of tensors this should allow us to compare # a nested tensor to a nested tensor and a nested tensor to a list of expected tensors if isinstance(x, torch.Tensor) and x.is_nested: x = x.unbind() if isinstance(y, torch.Tensor) and y.is_nested: y = y.unbind() error_metas = not_close_error_metas( x, y, pair_types=( NonePair, RelaxedBooleanPair, RelaxedNumberPair, TensorOrArrayPair, TypedStoragePair, StringPair, SetPair, TypePair, ObjectPair, ), sequence_types=( Sequence, Sequential, ModuleList, ParameterList, ScriptList, torch.utils.data.dataset.Subset, ), mapping_types=(Mapping, ModuleDict, ParameterDict, ScriptDict), rtol=rtol, rtol_override=self.rel_tol, atol=atol, atol_override=self.precision, equal_nan=equal_nan, check_device=exact_device, check_dtype=exact_dtype, check_layout=exact_layout, check_stride=exact_stride, check_is_coalesced=exact_is_coalesced, ) if error_metas: # TODO: compose all metas into one AssertionError raise error_metas[0].to_error( # This emulates unittest.TestCase's behavior if a custom message passed and # TestCase.longMessage (https://docs.python.org/3/library/unittest.html#unittest.TestCase.longMessage) # is True (default) (lambda generated_msg: f"{generated_msg}\n{msg}") if isinstance(msg, str) and self.longMessage else msg ) def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override] atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: with self.assertRaises(AssertionError, msg=msg): self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs) def assertEqualTypeString(self, x, y) -> None: # This API is used simulate deprecated x.type() == y.type() self.assertEqual(x.device, y.device) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.is_sparse, y.is_sparse) def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None: for elem in iterable: if id(obj) == id(elem): return raise AssertionError("object not found in iterable") # Reimplemented to provide special behavior when # _ignore_not_implemented_error is True def assertRaises(self, expected_exception, *args, **kwargs): if self._ignore_not_implemented_error: context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \ AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg] try: return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr] finally: # see https://bugs.python.org/issue23890 context = None else: return super().assertRaises(expected_exception, *args, **kwargs) # Reimplemented to provide special behavior when # _ignore_not_implemented_error is True def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs): # Verifies that an exception with the type expected_exception and message # matching the regular expression defined by expected_regex is thrown. # If the test is instantiated for a non-native device type (like XLA) # then the message is not validated. # Checks whether the test is instantiated for a device type by testing # if the test class has defined the device_type attribute and, # if so, tests whether the instantiated device type is native or not if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES: # type: ignore[attr-defined] # empty string matches any string expected_regex = '' if self._ignore_not_implemented_error: context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg] expected_exception, self, expected_regex) return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined] else: return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs) # TODO: Support context manager interface # NB: The kwargs forwarding to callable robs the 'subname' parameter. # If you need it, manually apply your callable in a lambda instead. def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): subname = None if 'subname' in kwargs: subname = kwargs['subname'] del kwargs['subname'] try: callable(*args, **kwargs) except exc_type as e: self.assertExpected(str(e), subname) return # Don't put this in the try block; the AssertionError will catch it self.fail(msg="Did not raise when expected to") def assertNotWarn(self, callable, msg=''): r""" Test if :attr:`callable` does not raise a warning. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised with set_warn_always_context(True): callable() self.assertTrue(len(ws) == 0, msg) @contextmanager def assertWarnsOnceRegex(self, category, regex=''): """Context manager for code that *must always* warn This filters expected warnings from the test and fails if the expected warning is not caught. It uses set_warn_always() to force TORCH_WARN_ONCE to behave like TORCH_WARN """ pattern = re.compile(regex) with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised with set_warn_always_context(True): yield if len(ws) == 0: self.fail('no warning caught') self.assertTrue(any([type(w.message) is category for w in ws])) self.assertTrue( any([re.match(pattern, str(w.message)) for w in ws]), f'{pattern}, {[w.message for w in ws if type(w.message) is category]}') def assertExpected(self, s, subname=None): r""" Test that a string matches the recorded contents of a file derived from the name of this test and subname. This file is placed in the 'expect' directory in the same directory as the test script. You can automatically update the recorded test output using --accept. If you call this multiple times in a single function, you must give a unique subname each time. """ if not isinstance(s, str): raise TypeError("assertExpected is strings only") def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text # NB: we take __file__ from the module that defined the test # class, so we place the expect directory where the test script # lives, NOT where test/common_utils.py lives. This doesn't matter in # PyTorch where all test scripts are in the same directory as # test/common_utils.py, but it matters in onnx-pytorch module_id = self.__class__.__module__ munged_id = remove_prefix(self.id(), module_id + ".") test_file = os.path.realpath(sys.modules[module_id].__file__) expected_file = os.path.join(os.path.dirname(test_file), "expect", munged_id) subname_output = "" if subname: expected_file += "-" + subname subname_output = " ({})".format(subname) expected_file += ".expect" expected = None def accept_output(update_type): print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s)) with open(expected_file, 'w') as f: # Adjust for producer_version, leave s unmodified s_tag = re.sub(r'(producer_version): "[0-9.]*"', r'\1: "CURRENT_VERSION"', s) f.write(s_tag) try: with open(expected_file) as f: expected = f.read() except IOError as e: if e.errno != errno.ENOENT: raise elif expecttest.ACCEPT: return accept_output("output") else: raise RuntimeError( ("I got this output for {}{}:\n\n{}\n\n" "No expect file exists; to accept the current output, run:\n" "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None # a hack for JIT tests if IS_WINDOWS: expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) # Adjust for producer_version expected = expected.replace( 'producer_version: "CURRENT_VERSION"', 'producer_version: "{}"'.format(torch.onnx.producer_version) ) if expecttest.ACCEPT: if expected != s: return accept_output("updated output") else: if hasattr(self, "assertMultiLineEqual"): # Python 2.7 only # NB: Python considers lhs "old" and rhs "new". self.assertMultiLineEqual(expected, s) else: self.assertEqual(s, expected) def assertExpectedStripMangled(self, s, subname=None): s = re.sub(r'__torch__[^ ]+', '', s) self.assertExpected(s, subname) def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None): """Assert that ``first`` is greater than or almost equal to ``second``. The equality of ``first`` and ``second`` is determined in a similar way to the ``assertAlmostEqual`` function of the standard library. """ if delta is not None and places is not None: raise TypeError("specify delta or places not both") if first >= second: return diff = second - first if delta is not None: if diff <= delta: return standardMsg = f"{first} not greater than or equal to {second} within {delta} delta" else: if places is None: places = 7 if round(diff, places) == 0: return standardMsg = f"{first} not greater than or equal to {second} within {places} places" msg = self._formatMessage(msg, standardMsg) raise self.failureException(msg) def assertAtenOp(self, onnx_model, operator, overload_name=""): all_aten_nodes = [p for p in onnx_model.graph.node if p.op_type == "ATen" and p.domain == "org.pytorch.aten"] self.assertTrue(all_aten_nodes) for op in all_aten_nodes: attrs = {attr.name: attr.s.decode() for attr in op.attribute} if attrs.get("operator") == operator: break self.assertEqual(attrs["operator"], operator) self.assertEqual(attrs.get("overload_name", ""), overload_name) def check_nondeterministic_alert(self, fn, caller_name, should_alert=True): '''Checks that an operation produces a nondeterministic alert when expected while `torch.use_deterministic_algorithms(True)` is set. Args: fn (callable): Function to check for a nondeterministic alert caller_name (str): Name of the operation that produces the nondeterministic alert. This name is expected to appear at the beginning of the error/warning message. should_alert (bool, optional): If True, then the check will only pass if calling `fn` produces a nondeterministic error/warning with the expected message. If False, then the check will only pass if calling `fn` does not produce an error. Default: `True`. ''' alert_message = '^' + caller_name + ' does not have a deterministic implementation, but you set' # Check that errors are thrown correctly with DeterministicGuard(True): if should_alert: with self.assertRaisesRegex( RuntimeError, alert_message, msg='expected a non-deterministic error, but it was not raised'): fn() else: # If a nondeterministic error is not expected, make sure # that it is not raised try: fn() except RuntimeError as e: if 'does not have a deterministic implementation' in str(e): self.fail( 'did not expect non-deterministic error message, ' + 'but got one anyway: "' + str(e) + '"') # Reraise exceptions unrelated to nondeterminism raise # Check that warnings are thrown correctly with DeterministicGuard(True, warn_only=True): if should_alert: with self.assertWarnsRegex( UserWarning, alert_message): fn() else: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fn() for warning in w: if isinstance(warning, UserWarning): self.assertTrue(re.search(alert_message, str(warning)) is None) # run code in subprocess and capture exceptions. @staticmethod def run_process_no_exception(code, env=None): import subprocess popen = subprocess.Popen( [sys.executable, '-c', code], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) (stdout, stderr) = popen.communicate() return (stdout, stderr) # returns captured stderr @staticmethod def runWithPytorchAPIUsageStderr(code): env = os.environ.copy() env["PYTORCH_API_USAGE_STDERR"] = "1" # remove CI flag since this is a wrapped test process. # CI flag should be set in the parent process only. if "CI" in env.keys(): del env["CI"] (stdout, stderr) = TestCase.run_process_no_exception(code, env=env) return stderr.decode('ascii') def download_file(url, binary=True): from urllib.parse import urlsplit from urllib import request, error filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) path = os.path.join(data_dir, filename) if os.path.exists(path): return path try: data = request.urlopen(url, timeout=15).read() with open(path, 'wb' if binary else 'w') as f: f.write(data) return path except error.URLError as e: msg = "could not download test file '{}'".format(url) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) from e def find_free_port(): """ Finds an available port and returns that port number. NOTE: If this function is being used to allocate a port to Store (or indirectly via init_process_group or init_rpc), it should be used in conjuction with the `retry_on_connect_failures` decorator as there is a potential race condition where the allocated port may become unavailable before it can be used """ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(('localhost', 0)) _, port = sock.getsockname() return port # Errors that we can get in c10d initialization for which we should retry tests for. ADDRESS_IN_USE = "Address already in use" CONNECT_TIMEOUT = "connect() timed out." def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)): """Reruns a test if the test returns a RuntimeError and the exception contains one of the strings in connect_errors.""" # This if block is executed when using this function as a decorator with arguments. if func is None: return partial(retry_on_connect_failures, connect_errors=connect_errors) @wraps(func) def wrapper(*args, **kwargs): n_retries = 10 tries_remaining = n_retries while True: try: return func(*args, **kwargs) except RuntimeError as error: if any(connect_error in str(error) for connect_error in connect_errors): tries_remaining -= 1 if tries_remaining == 0: raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}") from error time.sleep(random.random()) continue raise return wrapper # Decorator to retry upon certain Exceptions. def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False): def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as e: msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) print(msg) time.sleep(mdelay) mtries -= 1 try: return f(*args, **kwargs) except ExceptionToCheck as e: raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e return f_retry # true decorator return deco_retry # FIXME: modernize these to be consistent with make_tensor # and review including them in torch.testing # Methods for matrix generation def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'): assert rank <= l A = torch.randn(l, l, dtype=dtype, device=device) u, s, vh = torch.linalg.svd(A, full_matrices=False) for i in range(l): if i >= rank: s[i] = 0 elif s[i] == 0: s[i] = 1 return (u * s.to(dtype).unsqueeze(-2)) @ vh def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001): """ Returns a random rectangular matrix (batch of matrices) with singular values sampled from a Gaussian with mean `mean` and standard deviation `sigma`. The smaller the `sigma`, the better conditioned the output matrix is. """ primitive_dtype = { torch.float: torch.float, torch.double: torch.double, torch.cfloat: torch.float, torch.cdouble: torch.double } x = torch.rand(shape, dtype=dtype, device=device) m = x.size(-2) n = x.size(-1) u, _, vh = torch.linalg.svd(x, full_matrices=False) s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \ .sort(-1, descending=True).values.to(dtype) return (u * s.unsqueeze(-2)) @ vh # Returns a noncontiguous (tensor with the same shape and values as t # The noncontiguous tensor is constructed such that elements in the innermost # dimension are separated by zeros or (whenever possible) nans # TODO: consider more complicated noncontiguity schemes def noncontiguous_like(t): # Short-circuits if t is already noncontiguous if not t.is_contiguous(): return t # Choose a "weird" value that won't be accessed if t.dtype.is_floating_point or t.dtype.is_complex: value = math.nan elif t.dtype == torch.bool: value = True else: value = 12 result = t.new_empty(t.shape + (2,)) result[..., 0] = value result[..., 1] = t.detach() result = result[..., 1] result.requires_grad_(t.requires_grad) return result # TODO: remove this (prefer make_symmetric_matrices below) def random_symmetric_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.mT).div_(2) return A # Creates a symmetric matrix or batch of symmetric matrices # Shape must be a square matrix or batch of square matrices def make_symmetric_matrices(*shape, device, dtype): assert shape[-1] == shape[-2] t = make_tensor(shape, device=device, dtype=dtype) t = (t + t.mT).div_(2) return t def random_hermitian_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.mH).div_(2) return A def random_symmetric_psd_matrix(l, *batches, **kwargs): """ Returns a batch of random symmetric positive-semi-definite matrices. The shape of the result is batch_dims + (matrix_size, matrix_size) The following example creates a tensor of size 2 x 4 x 3 x 3 >>> # xdoctest: +SKIP("undefined variables") >>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device) """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) return A @ A.mT def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'): """ Returns a batch of random Hermitian positive-semi-definite matrices. The shape of the result is batch_dims + (matrix_size, matrix_size) The following example creates a tensor of size 2 x 4 x 3 x 3 >>> # xdoctest: +SKIP("undefined variables") >>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device) """ A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return A @ A.mH # TODO: remove this (prefer make_symmetric_pd_matrices below) def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.mT) \ + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5 # Creates a symmetric positive-definite matrix or batch of # such matrices def make_symmetric_pd_matrices(*shape, device, dtype): assert shape[-1] == shape[-2] t = make_tensor(shape, device=device, dtype=dtype) i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5 return t @ t.mT + i def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device): """ Returns a batch of random Hermitian positive-definite matrices. The shape of the result is batch_dims + (matrix_size, matrix_size) The following example creates a tensor of size 2 x 4 x 3 x 3 >>> # xdoctest: +SKIP("undefined variables") >>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device) """ A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device) # Creates a full rank matrix with distinct singular values or # a batch of such matrices def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False): with torch.no_grad(): t = make_tensor(shape, device=device, dtype=dtype) u, _, vh = torch.linalg.svd(t, full_matrices=False) real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype k = min(shape[-1], shape[-2]) # We choose the singular values to be "around one" # This is to make the matrix well conditioned # s = [2, 3, ..., k+1] s = torch.arange(2, k + 2, dtype=real_dtype, device=device) # s = [2, -3, 4, ..., (-1)^k k+1] s[1::2] *= -1. # 1 + 1/s so that the singular values are in the range [2/3, 3/2] # This gives a condition number of 9/4, which should be good enough s.reciprocal_().add_(1.) # Note that the singular values need not be ordered in an SVD so # we don't need need to sort S x = (u * s.to(u.dtype)) @ vh x.requires_grad_(requires_grad) return x def random_matrix(rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices. Parameters: dtype - the data type device - the device kind singular - when True, the output will be singular """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) singular = kwargs.get("singular", False) if silent and not torch._C.has_lapack: return torch.ones(rows, columns, dtype=dtype, device=device) A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device) if A.numel() == 0: return A u, _, vh = torch.linalg.svd(A, full_matrices=False) k = min(rows, columns) s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device) if singular: # make matrix singular s[k - 1] = 0 if k > 2: # increase the order of singularity so that the pivoting # in LU factorization will be non-trivial s[0] = 0 return (u * s.unsqueeze(-2)) @ vh def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices with given rank. """ B = random_matrix(rows, rank, *batch_dims, **kwargs) C = random_matrix(rank, columns, *batch_dims, **kwargs) return B.matmul(C) def random_sparse_matrix(rows, columns, density=0.01, **kwargs): """Return rectangular random sparse matrix within given density. The density of the result approaches to given density as the size of the matrix is increased and a relatively small value of density is specified but higher than min(rows, columns)/(rows * columns) for non-singular matrices. """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') singular = kwargs.get("singular", False) k = min(rows, columns) nonzero_elements = max(min(rows, columns), int(rows * columns * density)) row_indices = [i % rows for i in range(nonzero_elements)] column_indices = [i % columns for i in range(nonzero_elements)] random.shuffle(column_indices) indices = [row_indices, column_indices] values = torch.randn(nonzero_elements, dtype=dtype, device=device) # ensure that the diagonal dominates values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp() indices_tensor = torch.tensor(indices) A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device) return A.coalesce() def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs): """Return random sparse positive-definite matrix with given density. The eigenvalues of the matrix are defined as:: arange(1, matrix_size+1)/matrix_size Algorithm: A = diag(arange(1, matrix_size+1)/matrix_size) while : R = A = R^T A R """ import math torch = kwargs.get('torch', globals()['torch']) dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') data = {(i, i): float(i + 1) / matrix_size for i in range(matrix_size)} def multiply(data, N, i, j, cs, sn, left=True): for k in range(N): if left: ik, jk = (k, i), (k, j) else: ik, jk = (i, k), (j, k) aik, ajk = data.get(ik, 0), data.get(jk, 0) aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk if aik: data[ik] = aik else: data.pop(ik, None) if ajk: data[jk] = ajk else: data.pop(jk, None) target_nnz = density * matrix_size * matrix_size while len(data) < target_nnz: i = random.randint(0, matrix_size - 1) j = random.randint(0, matrix_size - 1) if i != j: theta = random.uniform(0, 2 * math.pi) cs = math.cos(theta) sn = math.sin(theta) multiply(data, matrix_size, i, j, cs, sn, left=True) multiply(data, matrix_size, i, j, cs, sn, left=False) icoords, jcoords, values = [], [], [] for (i, j), v in sorted(data.items()): icoords.append(i) jcoords.append(j) values.append(v) indices_tensor = torch.tensor([icoords, jcoords]) return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device) # FIXME: remove this by updating test suites using it def do_test_dtypes(self, dtypes, layout, device): for dtype in dtypes: if dtype != torch.float16: out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) self.assertIs(dtype, out.dtype) self.assertIs(layout, out.layout) self.assertEqual(device, out.device) # FIXME: remove this by updating test suites using it def do_test_empty_full(self, dtypes, layout, device): shape = torch.Size([2, 3]) def check_value(tensor, dtype, layout, device, value, requires_grad): self.assertEqual(shape, tensor.shape) self.assertIs(dtype, tensor.dtype) self.assertIs(layout, tensor.layout) self.assertEqual(tensor.requires_grad, requires_grad) if tensor.is_cuda and device is not None: self.assertEqual(device, tensor.device) if value is not None: fill = tensor.new(shape).fill_(value) self.assertEqual(tensor, fill) def get_int64_dtype(dtype): module = '.'.join(str(dtype).split('.')[1:-1]) if not module: return torch.int64 return operator.attrgetter(module)(torch).int64 default_dtype = torch.get_default_dtype() check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False) for dtype in dtypes: for rg in {dtype.is_floating_point, False}: int64_dtype = get_int64_dtype(dtype) v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) check_value(v, dtype, layout, device, None, rg) out = v.new() check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, None, rg) check_value(v.new_empty(shape), dtype, layout, device, None, False) check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, None, False) check_value(torch.empty_like(v), dtype, layout, device, None, False) check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, None, False) if dtype is not torch.float16 and layout != torch.sparse_coo: fv = 3 v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) check_value(v, dtype, layout, device, fv, rg) check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) out = v.new() check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, fv + 2, rg) check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, fv + 3, False) check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) check_value(torch.full_like(v, fv + 5, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, fv + 5, False) # FIXME: improve load_tests() documentation here running_script_path = None def set_running_script_path(): global running_script_path try: running_file = os.path.abspath(os.path.realpath(sys.argv[0])) if running_file.endswith('.py'): # skip if the running file is not a script running_script_path = running_file except Exception: pass def check_test_defined_in_running_script(test_case): if running_script_path is None: return test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__))) assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \ "is not defined in the running script \"{}\", but in \"{}\". Did you " \ "accidentally import a unittest.TestCase from another file?".format( test_case.id(), running_script_path, test_case_class_file) def load_tests(loader, tests, pattern): set_running_script_path() test_suite = unittest.TestSuite() for test_group in tests: if not DISABLE_RUNNING_SCRIPT_CHK: for test in test_group: check_test_defined_in_running_script(test) if test_group._tests: test_suite.addTest(test_group) return test_suite # FIXME: document this and move it to test_serialization class BytesIOContext(io.BytesIO): def __enter__(self): return self def __exit__(self, *args): pass # Tentative value for nondet_tol for gradcheck when backward implementation # relies on nondeterministic operations, i.e., those listed here: # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html # # For more information see https://github.com/pytorch/pytorch/issues/56202 GRADCHECK_NONDET_TOL = 1e-12 def is_slow_gradcheck_env() -> bool: return os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0") == "1" skipIfSlowGradcheckEnv = unittest.skipIf( is_slow_gradcheck_env(), "Tests that don't use gradcheck don't need to run on slow_gradcheck CI" ) def gradcheck(fn, inputs, **kwargs): # Wrapper around gradcheck that enables certain keys by default. # Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and # forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks # to be disabled to default for the public-facing api to avoid breaking user code. # # All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck. default_values = { "check_batched_grad": True, "fast_mode": True, } if is_slow_gradcheck_env(): default_values["fast_mode"] = False for key, value in default_values.items(): # default value override values explicitly set to None k = kwargs.get(key, None) kwargs[key] = k if k is not None else value return torch.autograd.gradcheck(fn, inputs, **kwargs) def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs): # Wrapper around gradgradcheck that enables certain keys by default # See gradcheck above for an explanation of why we need something like this. # # All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck default_values = { "check_batched_grad": True, "fast_mode": True, } if is_slow_gradcheck_env(): default_values["fast_mode"] = False for key, value in default_values.items(): # default value override values explicitly set to None k = kwargs.get(key, None) kwargs[key] = k if k is not None else value return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs) def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs): # call assert function rather than returning a bool since it's nicer # if we get whether this failed on the gradcheck or the gradgradcheck. test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs)) test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs)) @contextmanager def set_cwd(path: str) -> Iterator[None]: old_cwd = os.getcwd() try: os.chdir(path) yield finally: os.chdir(old_cwd) # FIXME: delete this # Using @toleranceOverride specific to your test is the recommended way # of doing this. These are just some values that worked for test_nn. dtype2prec_DONTUSE = {torch.float: 1e-5, torch.double: 1e-5, torch.half: 1e-2, torch.bfloat16: 1e-1} # FIXME: move to test_sparse or sparse utils # This is a wrapper that wraps a test to run this test twice, one with # coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors. def coalescedonoff(f): @wraps(f) def wrapped(self, *args, **kwargs): f(self, *args, **kwargs, coalesced=True) f(self, *args, **kwargs, coalesced=False) return wrapped def is_coalesced_indices(s): indices = s._indices() hash_coeffs = (1,) + s.shape[s.sparse_dim() - 1:0:-1] hash_indices = torch.tensor(hash_coeffs, device=s.device).cumprod(-1).flip(-1) if s.sparse_dim() > 1: hash_indices.unsqueeze_(-1) hash_indices = (indices * hash_indices).sum(0) else: hash_indices = indices * hash_indices # check if indices are sorted res = torch.allclose(hash_indices, hash_indices.sort()[0]) # check if there are no repeated indices res = res and torch.allclose(hash_indices, hash_indices.unique()) return res @contextlib.contextmanager def disable_gc(): if gc.isenabled(): try: gc.disable() yield finally: gc.enable() else: yield def find_library_location(lib_name: str) -> Path: # return the shared library file in the installed folder if exist, # else the file in the build folder torch_root = Path(torch.__file__).resolve().parent path = torch_root / 'lib' / lib_name if os.path.exists(path): return path torch_root = Path(__file__).resolve().parent.parent.parent return torch_root / 'build' / 'lib' / lib_name def sandcastle_skip(reason): """ Similar to unittest.skip, however in the sandcastle environment it just "passes" the test instead to avoid creating tasks complaining about tests skipping continuously. """ def decorator(func): if not IS_SANDCASTLE: func.__unittest_skip__ = True func.__unittest_skip_why__ = reason return func @wraps(func) def wrapper(*args, **kwargs): print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr) return return wrapper return decorator def mock_wrapper(method): """ Returns a function that calls the real implementation of a method in addition to passing args to a mock object. """ mock = MagicMock() @wraps(method) def wrapper(self, *args, **kwargs): mock(*args, **kwargs) return method(self, *args, **kwargs) wrapper.mock = mock # type: ignore[attr-defined] return wrapper def get_tensors_from(args, kwargs): """ Returns a set of all Tensor objects in the given args and kwargs. """ return set([arg for arg in args if isinstance(arg, Tensor)] + [v for v in kwargs.values() if isinstance(v, Tensor)]) # Returns scalar tensor representation of a list of integer byte values def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device): dtype_to_ctype: Dict[torch.dtype, Any] = { torch.int8: ctypes.c_int8, torch.uint8: ctypes.c_uint8, torch.int16: ctypes.c_int16, torch.int32: ctypes.c_int32, torch.int64: ctypes.c_int64, torch.bool: ctypes.c_bool, torch.float32: ctypes.c_float, torch.complex64: ctypes.c_float, torch.float64: ctypes.c_double, torch.complex128: ctypes.c_double, } ctype = dtype_to_ctype[dtype] num_bytes = ctypes.sizeof(ctype) def check_bytes(byte_list): for byte in byte_list: assert 0 <= byte <= 255 if dtype.is_complex: assert len(byte_list) == (num_bytes * 2) check_bytes(byte_list) real = ctype.from_buffer((ctypes.c_byte * num_bytes)( *byte_list[:num_bytes])).value imag = ctype.from_buffer((ctypes.c_byte * num_bytes)( *byte_list[num_bytes:])).value res = real + 1j * imag else: assert len(byte_list) == num_bytes check_bytes(byte_list) res = ctype.from_buffer((ctypes.c_byte * num_bytes)( *byte_list)).value return torch.tensor(res, device=device, dtype=dtype) def copy_func(f): """Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)""" g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g def xfail_inherited_tests(tests): """ Given a list of test names which are defined by a superclass of the class this decorates, mark them as expected failure. This is useful if you are doing poor man's parameterized tests by subclassing a generic test class. """ def deco(cls): for t in tests: # NB: expectedFailure operates by mutating the method in question, # which is why you have to copy the function first setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t)))) return cls return deco def sandcastle_skip_if(condition, reason): """ Similar to unittest.skipIf, however in the sandcastle environment it just "passes" the test instead to avoid creating tasks complaining about tests skipping continuously. """ def decorator(func): if condition: if IS_SANDCASTLE: @wraps(func) def wrapper(*args, **kwargs): print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr) return wrapper else: func.__unittest_skip__ = True func.__unittest_skip_why__ = reason return func return decorator def dtype_name(dtype): """ Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """ return str(dtype).split('.')[1] dtype_abbrs = { torch.bfloat16: 'bf16', torch.float64: 'f64', torch.float32: 'f32', torch.float16: 'f16', torch.complex32: 'c32', torch.complex64: 'c64', torch.complex128: 'c128', torch.int8: 'i8', torch.int16: 'i16', torch.int32: 'i32', torch.int64: 'i64', torch.bool: 'b8', torch.uint8: 'u8', } def set_single_threaded_if_parallel_tbb(fn): """Set test to be single threaded for parallel tbb. See https://github.com/pytorch/pytorch/issues/64571#issuecomment-914691883 """ if not IS_TBB: return fn @wraps(fn) def wrap_fn(*args, **kwargs): num_threads = torch.get_num_threads() torch.set_num_threads(1) try: return fn(*args, **kwargs) finally: torch.set_num_threads(num_threads) return wrap_fn @functools.lru_cache() def get_cycles_per_ms() -> float: """Measure and return approximate number of cycles per millisecond for torch.cuda._sleep """ def measure() -> float: start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() torch.cuda._sleep(1000000) end.record() end.synchronize() cycles_per_ms = 1000000 / start.elapsed_time(end) return cycles_per_ms # Get 10 values and remove the 2 max and 2 min and return the avg. # This is to avoid system disturbance that skew the results, e.g. # the very first cuda call likely does a bunch of init, which takes # much longer than subsequent calls. # # Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs # and seems to return stable values. Therefore, we enable caching # using lru_cache decorator above. num = 10 vals = [] for _ in range(num): vals.append(measure()) vals = sorted(vals) return mean(vals[2 : num - 2]) # OpInfo utils T = TypeVar('T') def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T: """ Returns the first sample from an iterable of samples, like those returned by OpInfo. The test will be skipped if no samples are available. """ try: return next(iter(samples)) except StopIteration as e: raise unittest.SkipTest('Skipped! Need at least 1 sample input') from e # this helper method is to recursively # clone the tensor-type input of operators tested by OpInfo def clone_input_helper(input): if isinstance(input, torch.Tensor): return torch.clone(input) if isinstance(input, Sequence): return tuple(map(clone_input_helper, input)) return input @contextmanager def custom_op(opname, symbolic_fn, opset_version): """Context manager/decorator to test ONNX export with custom oeprator""" try: register_custom_op_symbolic(opname, symbolic_fn, opset_version) yield finally: unregister_custom_op_symbolic(opname, opset_version) def outs_and_grads(fn, graph_inps, inps): outs = fn(*graph_inps) for out in pytree.tree_flatten(outs)[0]: if isinstance(out, torch.Tensor) and out.requires_grad: out.sum().backward(retain_graph=True) grads = [inp.grad for inp in pytree.tree_flatten(inps)[0] if isinstance(inp, torch.Tensor)] for inp in pytree.tree_flatten(inps)[0]: if isinstance(inp, torch.Tensor): inp.grad = None return outs, grads def compare_equal_outs_and_grads(test, m1, m2, inps): r1, g1 = outs_and_grads(m1, inps, inps) r2, g2 = outs_and_grads(m2, inps, inps) test.assertEqual(r1, r2) test.assertEqual(g1, g2) class TestGradients(TestCase): exact_dtype = True # Copies inputs to inplace operations to avoid inplace modifications # to leaves requiring gradient def _get_safe_inplace(self, inplace_variant): @wraps(inplace_variant) def _fn(t, *args, **kwargs): return inplace_variant(t.clone(), *args, **kwargs) return _fn def _check_helper(self, device, dtype, op, variant, check, *, check_forward_ad=False, check_backward_ad=True, check_batched_grad=None, check_batched_forward_grad=False): assert check in ('gradcheck', 'bwgrad_bwgrad', 'fwgrad_bwgrad') # NB: check_backward_ad does not affect gradgradcheck (always True) if variant is None: self.skipTest("Skipped! Variant not implemented.") if not op.supports_dtype(dtype, torch.device(device).type): self.skipTest(f"Skipped! {op.name} does not support dtype {str(dtype)}") def is_inplace(variant): if hasattr(variant, "__wrapped__"): return variant.__wrapped__ is op.get_inplace() return variant is op.get_inplace() include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex samples = op.sample_inputs(device, dtype, requires_grad=True, include_conjugated_inputs=include_conjugated_inputs, small_inputs_only=is_slow_gradcheck_env()) for sample in samples: if sample.broadcasts_input and is_inplace(variant): continue # Gradcheck expects tensors as its input, but autograd actually supports tensorlists # and tensors passed as kwargs. The following creates a function that accepts just # the tensors that require grad as varargs, and then recomposes them back into the # original input. # Creates gradcheck inputs by identifying tensors requiring grad all_args = None if is_iterable_of_tensors(sample.input): all_args = chain(sample.input, sample.args, sample.kwargs.values()) else: all_args = tuple(chain((sample.input,), sample.args, sample.kwargs.values())) gradcheck_args = tuple(x for x in all_args if (isinstance(x, torch.Tensor) and x.requires_grad)) # Verifies sample input tensors should have no grad # This may happen if the same tensor is used in two different SampleInputs for t in gradcheck_args: self.assertIsNone(t.grad, "A sampled input has a gradient before running autograd. " "This usually means that (at least) one input tensor is reused " "across different SampleInputs. " "Please create a new tensor for each SampleInput.") def _input_recomposition_helper(inputs, inp, input_idx): if is_iterable_of_tensors(inp): tensor_list = [] for x in inp: if isinstance(x, torch.Tensor) and x.requires_grad: tensor_list.append(inputs[input_idx]) input_idx = input_idx + 1 else: tensor_list.append(x) return tensor_list, input_idx elif isinstance(inp, torch.Tensor) and inp.requires_grad: return inputs[input_idx], input_idx + 1 else: return inp, input_idx def fn(*inputs): # Puts inputs back into sample properly positional_args = [] input_idx = 0 inp, input_idx = _input_recomposition_helper(inputs, sample.input, input_idx) positional_args.append(inp) for x in sample.args: inp, input_idx = _input_recomposition_helper(inputs, x, input_idx) positional_args.append(inp) # Recreates kwargs kwargs = {} for k, v in sample.kwargs.items(): inp, input_idx = _input_recomposition_helper(inputs, v, input_idx) kwargs[k] = inp output = op.gradcheck_wrapper(variant, *positional_args, **kwargs) if sample.output_process_fn_grad is not None: return sample.output_process_fn_grad(output) return output if check == 'gradcheck': if check_batched_grad is None: check_batched_grad = op.check_batched_grad self.assertTrue(gradcheck(fn, gradcheck_args, check_batched_grad=check_batched_grad, check_grad_dtypes=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode, check_forward_ad=check_forward_ad, check_backward_ad=check_backward_ad, check_undefined_grad=True, check_batched_forward_grad=check_batched_forward_grad)) elif check in ('bwgrad_bwgrad', 'fwgrad_bwgrad'): # gradgrad check self.assertFalse(check_forward_ad, msg="Cannot run forward AD check for gradgradcheck") for gen_non_contig_grad_outputs in (False, True): kwargs = { "gen_non_contig_grad_outputs": gen_non_contig_grad_outputs, "check_batched_grad": op.check_batched_gradgrad, "check_grad_dtypes": True, "nondet_tol": op.gradcheck_nondet_tol, "fast_mode": op.gradcheck_fast_mode } if check == "fwgrad_bwgrad": kwargs["check_fwd_over_rev"] = True kwargs["check_rev_over_rev"] = False kwargs["check_batched_grad"] = False kwargs["check_undefined_grad"] = False self.assertTrue(gradgradcheck(fn, gradcheck_args, **kwargs)) else: self.assertTrue(False, msg="Unknown check requested!") def _grad_test_helper(self, device, dtype, op, variant, *, check_forward_ad=False, check_backward_ad=True, check_batched_grad=None, check_batched_forward_grad=False): return self._check_helper(device, dtype, op, variant, 'gradcheck', check_forward_ad=check_forward_ad, check_backward_ad=check_backward_ad, check_batched_grad=check_batched_grad, check_batched_forward_grad=check_batched_forward_grad) def _skip_helper(self, op, device, dtype): if dtype not in op.supported_backward_dtypes(torch.device(device).type): self.skipTest("Skipped! Op doesn't support autograd for this dtype.") if not op.supports_autograd and not op.supports_forward_ad: self.skipTest("Skipped! autograd not supported.") if op.name == "cat": self.skipTest("TODO(whc) fix pre-existing bug with cat for newly added opinfo for empty+nonempty") if op.name == "linalg.det" and device == "cpu": self.skipTest("skipping CPU test")