r"""Importing this file includes common utility methods and base clases for checking quantization api and properties of resulting modules. """ import torch import torch.nn as nn import torch.nn.functional as F import torch.ao.nn.intrinsic.quantized.dynamic as nniqd import torch.ao.nn.quantized as nnq import torch.ao.nn.quantized.dynamic as nnqd from torch.ao.nn.intrinsic import _FusedModule import torch.distributed as dist from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM from torch.ao.quantization import ( QuantType, default_dynamic_qat_qconfig, default_embedding_qat_qconfig, default_symmetric_qnnpack_qat_qconfig, ) from torch.ao.quantization import QuantWrapper, QuantStub, DeQuantStub, \ default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \ propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_weight_only_qconfig, \ get_default_qat_qconfig, PerChannelMinMaxObserver, default_dynamic_quant_observer, quantize from torch.ao.quantization.quantization_mappings import ( get_default_dynamic_quant_module_mappings, get_default_qconfig_propagation_list, get_default_qat_module_mappings, ) from torch.testing._internal.common_quantized import ( override_quantized_engine, ) from torch.jit.mobile import _load_for_lite_interpreter try: # graph mode quantization based on fx from torch.ao.quantization.quantize_fx import ( prepare_fx, prepare_qat_fx, convert_fx, convert_to_reference_fx, ) from torch.ao.ns.fx.ns_types import NSSingleResultValuesType, NSSubgraph from torch.fx.graph import Node from torch.fx import GraphModule HAS_FX = True except ImportError: HAS_FX = False import copy import io import functools import time import os import unittest import numpy as np from torch.testing import FileCheck from typing import Callable, Tuple, Dict, Any, Union, Type, Optional class NodeSpec: ''' Used for checking GraphModule Node ''' def __init__(self, op, target): ''' op: call_function | call_module target: for call_function, target would be a function for call_module, target would be the type of PyTorch module ''' self.op = op self.target = target @classmethod def call_function(cls, target): return NodeSpec('call_function', target) @classmethod def call_method(cls, target): return NodeSpec('call_method', target) @classmethod def call_module(cls, target): return NodeSpec('call_module', target) def __hash__(self): return hash((self.op, self.target)) def __eq__(self, other): if not isinstance(other, NodeSpec): return NotImplemented return self.op == other.op and self.target == other.target def __repr__(self): return repr(self.op) + " " + repr(self.target) def get_supported_device_types(): return ['cpu', 'cuda'] if torch.cuda.is_available() and not TEST_WITH_ROCM else ['cpu'] def test_only_eval_fn(model, calib_data): r""" Default evaluation function takes a torch.utils.data.Dataset or a list of input Tensors and run the model on the dataset """ for inp in calib_data: output = model(*inp) _default_loss_fn = torch.nn.CrossEntropyLoss() def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn): r""" Default train function takes a torch.utils.data.Dataset and train the model on the dataset """ optimizer = torch.optim.Adam(model.parameters(), lr=0.001) train_loss, correct, total = 0, 0, 0 for i in range(10): model.train() for data, target in train_data: optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(output, 1) total += target.size(0) correct += (predicted == target).sum().item() return train_loss, correct, total class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches): model.train() cnt = 0 for image, target in data_loader: start_time = time.time() print('.', end='') cnt += 1 image, target = image.to(device), target.to(device) output = model(image) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() acc1, acc5 = accuracy(output, target, topk=(1, 5)) if cnt >= ntrain_batches: return return def ddp_setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) def ddp_cleanup(): dist.destroy_process_group() def run_ddp(rank, world_size, prepared): ddp_setup(rank, world_size) prepared.cuda() prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank]) prepared.to(rank) model_with_ddp = prepared optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001) train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1) ddp_cleanup() def convert_dynamic(module): convert(module, get_default_dynamic_quant_module_mappings(), inplace=True) def prepare_dynamic(model, qconfig_dict=None): propagate_qconfig_(model, qconfig_dict) def _make_conv_test_input( batch_size, in_channels_per_group, input_feature_map_size, out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale, W_zero_point, use_bias, use_channelwise, ): in_channels = in_channels_per_group * groups out_channels = out_channels_per_group * groups (X_value_min, X_value_max) = (0, 4) X_init = torch.randint( X_value_min, X_value_max, (batch_size, in_channels,) + input_feature_map_size) X = X_scale * (X_init - X_zero_point).float() X_q = torch.quantize_per_tensor( X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8) W_scale = W_scale * out_channels W_zero_point = W_zero_point * out_channels # Resize W_scale and W_zero_points arrays equal to out_channels W_scale = W_scale[:out_channels] W_zero_point = W_zero_point[:out_channels] # For testing, we use small values for weights and for activations so that # no overflow occurs in vpmaddubsw instruction. If the overflow occurs in # qconv implementation and if there is no overflow. # In reference we can't exactly match the results with reference. # Please see the comment in qconv implementation file # aten/src/ATen/native/quantized/cpu/qconv.cpp for more details. (W_value_min, W_value_max) = (-5, 5) # The operator expects them in the format # (out_channels, in_channels/groups,) + kernel_size W_init = torch.randint( W_value_min, W_value_max, (out_channels, in_channels_per_group,) + kernel_size) b_init = torch.randint(0, 10, (out_channels,)) if use_channelwise: W_shape = (-1, 1) + (1,) * len(kernel_size) W_scales_tensor = torch.tensor(W_scale, dtype=torch.float) W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float) W = W_scales_tensor.reshape(*W_shape) * ( W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float() b = X_scale * W_scales_tensor * b_init.float() W_q = torch.quantize_per_channel( W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0, dtype=torch.qint8) else: W = W_scale[0] * (W_init - W_zero_point[0]).float() b = X_scale * W_scale[0] * b_init.float() W_q = torch.quantize_per_tensor( W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8) return (X, X_q, W, W_q, b if use_bias else None) def _make_conv_add_extra_input_tensor(scale, zero_point, sizes): (X_value_min, X_value_max) = (0, 4) X_init = torch.randint( X_value_min, X_value_max, sizes # Infer the size of tensor to do the add ) X = scale * (X_init - zero_point).float() X_q = torch.quantize_per_tensor( X, scale=scale, zero_point=zero_point, dtype=torch.quint8) return X, X_q def skipIfNoFBGEMM(fn): reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.' if isinstance(fn, type): if 'fbgemm' not in torch.backends.quantized.supported_engines: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = reason return fn @functools.wraps(fn) def wrapper(*args, **kwargs): if 'fbgemm' not in torch.backends.quantized.supported_engines: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper def skipIfNoQNNPACK(fn): reason = 'Quantized operations require QNNPACK.' if isinstance(fn, type): if 'qnnpack' not in torch.backends.quantized.supported_engines: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = reason return fn @functools.wraps(fn) def wrapper(*args, **kwargs): if 'qnnpack' not in torch.backends.quantized.supported_engines: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper @functools.wraps(fn) def wrapper(*args, **kwargs): if not torch.onnx._CAFFE2_ATEN_FALLBACK: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper def withQNNPACKBackend(fn): # TODO(future PR): consider combining with skipIfNoQNNPACK, # will require testing of existing callsites reason = 'Quantized operations require QNNPACK.' if isinstance(fn, type): if 'qnnpack' not in torch.backends.quantized.supported_engines: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = reason return fn @functools.wraps(fn) def wrapper(*args, **kwargs): if 'qnnpack' not in torch.backends.quantized.supported_engines: raise unittest.SkipTest(reason) with override_quantized_engine('qnnpack'): fn(*args, **kwargs) return wrapper def skipIfNoONEDNN(fn): reason = 'Quantized operations require ONEDNN.' if isinstance(fn, type): if 'onednn' not in torch.backends.quantized.supported_engines: fn.__unittest_skip__ = True fn.__unittest_skip_why__ = reason return fn @functools.wraps(fn) def wrapper(*args, **kwargs): if 'onednn' not in torch.backends.quantized.supported_engines: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper try: import torchvision # noqa: F401 HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") def get_script_module(model, tracing, data): return torch.jit.trace(model, data) if tracing else torch.jit.script(model) def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True): """ Convert lengths to offsets for embedding_bag """ tt = np.zeros((t.shape[0] + 1,), dtype=offset_type) tt[1:] = t tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type)) if use_begin_offset: return tt[:-1] return tt[1:] # QuantizationTestCase used as a base class for testing quantization on modules class QuantizationTestCase(TestCase): def setUp(self): super().setUp() self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)] self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)] self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)] for _ in range(2)] self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)] for _ in range(2)] self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)] for _ in range(2)] self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float), torch.randint(0, 1, (1,), dtype=torch.long)] for _ in range(2)] self.img_data_dict = {1 : self.img_data_1d, 2 : self.img_data_2d, 3 : self.img_data_3d} # Quant types that produce statically quantized ops self.static_quant_types = [QuantType.STATIC, QuantType.QAT] # All quant types for (fx based) graph mode quantization self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT] def checkNoPrepModules(self, module): r"""Checks the module does not contain child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertFalse(hasattr(module, 'quant')) self.assertFalse(hasattr(module, 'dequant')) def checkNoQconfig(self, module): r"""Checks the module does not contain qconfig """ self.assertFalse(hasattr(module, 'qconfig')) for child in module.children(): self.checkNoQconfig(child) def checkHasPrepModules(self, module): r"""Checks the module contains child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertTrue(hasattr(module, 'module')) self.assertTrue(hasattr(module, 'quant')) self.assertTrue(hasattr(module, 'dequant')) def checkObservers(self, module, propagate_qconfig_list=None, prepare_custom_config_dict=None): r"""Checks the module or module's leaf descendants have observers in preperation for quantization """ if propagate_qconfig_list is None: propagate_qconfig_list = get_default_qconfig_propagation_list() if prepare_custom_config_dict is None: prepare_custom_config_dict = {} float_to_observed_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {}) # check if a module is a leaf module, ignoring activation_post_process attribute def is_leaf_module(module): submodule_name_count = 0 for name, _ in module.named_children(): if name != 'activation_post_process': submodule_name_count += 1 return submodule_name_count == 0 if hasattr(module, 'qconfig') and module.qconfig is not None and \ ((is_leaf_module(module) and not isinstance(module, torch.nn.Sequential) and type(module) in propagate_qconfig_list) or type(module) in float_to_observed_module_class_mapping.keys()) and \ not isinstance(module, torch.ao.quantization.DeQuantStub): self.assertTrue(hasattr(module, 'activation_post_process'), 'module: ' + str(type(module)) + ' do not have observer') # we don't need to check observers for child modules of the # qat modules if type(module) not in get_default_qat_module_mappings().values() and \ type(module) not in float_to_observed_module_class_mapping.values() and \ not isinstance(module, _FusedModule): for child in module.children(): if type(child) in [nn.Dropout]: continue self.checkObservers(child, propagate_qconfig_list, prepare_custom_config_dict) def checkQuantDequant(self, mod): r"""Checks that mod has nn.Quantize and nn.DeQuantize submodules inserted """ self.assertEqual(type(mod.quant), nnq.Quantize) self.assertEqual(type(mod.dequant), nnq.DeQuantize) def checkWrappedQuantizedLinear(self, mod): r"""Checks that mod has been swapped for an nnq.Linear module, the bias is qint32, and that the module has Quantize and DeQuantize submodules """ self.assertEqual(type(mod.module), nnq.Linear) self.checkQuantDequant(mod) def checkQuantizedLinear(self, mod): self.assertEqual(type(mod), nnq.Linear) def checkDynamicQuantizedLinear(self, mod, dtype): r"""Checks that mod has been swapped for an nnqd.Linear module, the bias is float. """ self.assertEqual(type(mod), nnqd.Linear) self.assertEqual(mod._packed_params.dtype, dtype) def checkDynamicQuantizedLinearRelu(self, mod, dtype): r"""Checks that mod has been swapped for an nnqd.Linear module, the bias is float. """ self.assertEqual(type(mod), nniqd.LinearReLU) self.assertEqual(mod._packed_params.dtype, dtype) def check_eager_serialization(self, ref_model, loaded_model, x): # Check state dict serialization and torch.save APIs model_dict = ref_model.state_dict() b = io.BytesIO() torch.save(model_dict, b) b.seek(0) loaded_dict = torch.load(b) loaded_model.load_state_dict(loaded_dict) ref_out = ref_model(*x) load_out = loaded_model(*x) def check_outputs(ref_out, load_out): self.assertEqual(ref_out[0], load_out[0]) if isinstance(ref_out[1], tuple): self.assertEqual(ref_out[1][0], load_out[1][0]) self.assertEqual(ref_out[1][1], load_out[1][1]) else: self.assertEqual(ref_out[1], load_out[1]) check_outputs(ref_out, load_out) b = io.BytesIO() torch.save(ref_model, b) b.seek(0) loaded = torch.load(b) load_out = loaded(*x) check_outputs(ref_out, load_out) def check_weight_bias_api(self, ref_model, weight_keys, bias_keys): weight = ref_model.get_weight() bias = ref_model.get_bias() self.assertEqual(weight_keys ^ weight.keys(), set()) self.assertEqual(bias_keys ^ bias.keys(), set()) def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype): r"""Checks that mod has been swapped for an nnqd.LSTM type module, the bias is float. """ wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'} self.assertEqual(type(mod), reference_module_type) for packed_params in mod._all_weight_values: self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype]) def checkLinear(self, mod): self.assertEqual(type(mod), torch.nn.Linear) def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype): r"""Checks that mod has been swapped for an nnqd.Linear module, the bias is float. """ wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'} self.assertEqual(type(mod), reference_module_type) if hasattr(mod, '_all_weight_values'): for packed_params in mod._all_weight_values: self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype]) def checkScriptable(self, orig_mod, calib_data, check_save_load=False): scripted = torch.jit.script(orig_mod) self._checkScriptable(orig_mod, scripted, calib_data, check_save_load) # Use first calib_data entry as trace input traced = torch.jit.trace(orig_mod, calib_data[0]) self._checkScriptable(orig_mod, traced, calib_data, check_save_load) # Call this twice: once for a scripted module and once for a traced module def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load): self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data) # Test save/load buffer = io.BytesIO() torch.jit.save(script_mod, buffer) buffer.seek(0) loaded_mod = torch.jit.load(buffer) # Pending __get_state_ and __set_state__ support # See tracking task https://github.com/pytorch/pytorch/issues/23984 if check_save_load: self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data) def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data): for inp in calib_data: ref_output = orig_mod(*inp) scripted_output = test_mod(*inp) self.assertEqual(scripted_output, ref_output) def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False, check=True, eval_mode=True, dynamic=False, qconfig=None): if debug: print('Testing:', str(module)) qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)} if eval_mode: module = module.eval() if dynamic: qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig} model = get_script_module(module, tracing, inputs[0]).eval() if debug: print('input graph:', model.graph) models = {} outputs = {} for debug in [True, False]: if dynamic: models[debug] = quantize_dynamic_jit(model, qconfig_dict, debug=debug) # make sure it runs outputs[debug] = models[debug](inputs) else: # module under test can contain in-place ops, and we depend on # input data staying constant for comparisons inputs_copy = copy.deepcopy(inputs) models[debug] = quantize_jit( model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False, debug=debug) # make sure it runs outputs[debug] = models[debug](*inputs[0]) if debug: print('debug graph:', models[True].graph) print('non debug graph:', models[False].graph) if check: # debug and non-debug option should have the same numerics self.assertEqual(outputs[True], outputs[False]) # non debug graph should produce quantized op FileCheck().check(quantized_op) \ .run(models[False].graph) return models[False] def checkGraphModuleNodes( self, graph_module, expected_node=None, expected_node_occurrence=None, expected_node_list=None): """ Check if GraphModule contains the target node Args: graph_module: the GraphModule instance we want to check expected_node, expected_node_occurrence, expected_node_list: see docs for checkGraphModeFxOp """ nodes_in_graph = {} node_list = [] modules = dict(graph_module.named_modules(remove_duplicate=False)) for node in graph_module.graph.nodes: n = None if node.op == 'call_function' or node.op == 'call_method': n = NodeSpec(node.op, node.target) elif node.op == 'call_module': n = NodeSpec(node.op, type(modules[node.target])) if n is not None: node_list.append(n) if n in nodes_in_graph: nodes_in_graph[n] += 1 else: nodes_in_graph[n] = 1 if expected_node is not None: self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) + ' not found in the graph module') if expected_node_occurrence is not None: for expected_node, occurrence in expected_node_occurrence.items(): if occurrence != 0: self.assertTrue( expected_node in nodes_in_graph, 'Check failed for node:' + str(expected_node) + ' not found') self.assertTrue( nodes_in_graph[expected_node] == occurrence, 'Check failed for node:' + str(expected_node) + ' Expected occurrence:' + str(occurrence) + ' Found occurrence:' + str(nodes_in_graph[expected_node])) else: self.assertTrue( expected_node not in nodes_in_graph, 'Check failed for node:' + str(expected_node) + ' expected no occurrence but found') if expected_node_list is not None: cur_index = 0 for n in node_list: if cur_index == len(expected_node_list): return if n == expected_node_list[cur_index]: cur_index += 1 self.assertTrue( cur_index == len(expected_node_list), "Check failed for graph:" + self.printGraphModule(graph_module, print_str=False) + "Expected ordered list:" + str(expected_node_list)) def printGraphModule(self, graph_module, print_str=True): modules = dict(graph_module.named_modules(remove_duplicate=False)) node_infos = [] for n in graph_module.graph.nodes: node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs])) if n.op == 'call_module': node_info += ' module type: ' + repr(type(modules[n.target])) node_infos.append(node_info) str_to_print = '\n'.join(node_infos) if print_str: print(str_to_print) return str_to_print if HAS_FX: def assert_types_for_matched_subgraph_pairs( self, matched_subgraph_pairs: Dict[str, Tuple[NSSubgraph, NSSubgraph]], expected_types: Dict[str, Tuple[Tuple[Callable, Callable], Tuple[Callable, Callable]]], gm_a: GraphModule, gm_b: GraphModule, ) -> None: """ Verifies that the types specified in expected_types match the underlying objects pointed to by the nodes in matched_subgraph_pairs. An example successful test case: matched_subgraph_pairs = {'x0': (graph_a_conv_0_node, graph_b_conv_0_node)} expected_types = {'x0': (nn.Conv2d, nnq.Conv2d)} The function tests for key equivalence, and verifies types with instance checks. """ def _get_underlying_op_type( node: Node, gm: GraphModule ) -> Union[Callable, str]: if node.op == 'call_module': mod = getattr(gm, node.target) return type(mod) else: assert node.op in ('call_function', 'call_method') return node.target self.assertTrue( len(matched_subgraph_pairs) == len(expected_types), 'Expected length of results to match, but got %d and %d' % (len(matched_subgraph_pairs), len(expected_types)) ) for k, v in expected_types.items(): expected_types_a, expected_types_b = v exp_type_start_a, exp_type_end_a = expected_types_a exp_type_start_b, exp_type_end_b = expected_types_b subgraph_a, subgraph_b = matched_subgraph_pairs[k] act_type_start_a = _get_underlying_op_type(subgraph_a.start_node, gm_a) act_type_start_b = _get_underlying_op_type(subgraph_b.start_node, gm_b) act_type_end_a = _get_underlying_op_type(subgraph_a.end_node, gm_a) act_type_end_b = _get_underlying_op_type(subgraph_b.end_node, gm_b) types_match = (exp_type_start_a is act_type_start_a) and \ (exp_type_end_a is act_type_end_a) and \ (exp_type_start_b is act_type_start_b) and \ (exp_type_end_b is act_type_end_b) self.assertTrue( types_match, 'Type mismatch at %s: expected %s, got %s' % (k, (exp_type_start_a, exp_type_end_a, exp_type_start_b, exp_type_end_b), (act_type_start_a, act_type_end_a, act_type_start_b, act_type_end_b)) ) def assert_ns_compare_dict_valid( self, act_compare_dict: Dict[str, Dict[str, Dict[str, Any]]], ) -> None: """ Verifies that the act_compare_dict (output of Numeric Suite APIs) is valid: 1. for each layer, results are recorded for two models 2. number of seen tensors match 3. shapes of each pair of seen tensors match """ for layer_name, result_type_to_data in act_compare_dict.items(): for result_type, layer_data in result_type_to_data.items(): self.assertTrue( len(layer_data) == 2, f"Layer {layer_name} does not have exactly two model results.") model_name_0, model_name_1 = layer_data.keys() for res_idx in range(len(layer_data[model_name_0])): layer_data_0 = layer_data[model_name_0][res_idx] layer_data_1 = layer_data[model_name_1][res_idx] self.assertTrue( layer_data_0['type'] == layer_data_0['type'], f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same type.") self.assertTrue( len(layer_data_0['values']) == len(layer_data_1['values']), f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same number of seen Tensors.") # F.conv1d weight has rank 3, and toq.conv1d unpacked weight # has rank 4. For now, skip the length check for conv1d only. is_weight_functional_conv1d = ( result_type == NSSingleResultValuesType.WEIGHT.value and ( 'conv1d' in layer_data_0['prev_node_target_type'] or 'conv1d' in layer_data_1['prev_node_target_type'] ) ) if not is_weight_functional_conv1d: for idx in range(len(layer_data_0['values'])): values_0 = layer_data_0['values'][idx] values_1 = layer_data_1['values'][idx] if isinstance(values_0, torch.Tensor): self.assertTrue( values_0.shape == values_1.shape, f"Layer {layer_name}, {model_name_0} and {model_name_1} " + f"have a shape mismatch at idx {idx}.") elif isinstance(values_0, list): values_0 = values_0[0] values_1 = values_1[0] self.assertTrue( values_0.shape == values_1.shape, f"Layer {layer_name}, {model_name_0} and {model_name_1} " + f"have a shape mismatch at idx {idx}.") else: assert isinstance(values_0, tuple), \ f"unhandled type {type(values_0)}" assert len(values_0) == 2 assert len(values_0[1]) == 2 assert values_0[0].shape == values_1[0].shape assert values_0[1][0].shape == values_1[1][0].shape assert values_0[1][1].shape == values_1[1][1].shape # verify that ref_node_name is valid ref_node_name_0 = layer_data_0['ref_node_name'] ref_node_name_1 = layer_data_1['ref_node_name'] prev_node_name_0 = layer_data_0['prev_node_name'] prev_node_name_1 = layer_data_1['prev_node_name'] if layer_data_0['type'] == NSSingleResultValuesType.NODE_OUTPUT.value: self.assertTrue(ref_node_name_0 == prev_node_name_0) self.assertTrue(ref_node_name_1 == prev_node_name_1) elif layer_data_0['type'] == NSSingleResultValuesType.NODE_INPUT.value: self.assertTrue(ref_node_name_0 != prev_node_name_0) self.assertTrue(ref_node_name_1 != prev_node_name_1) def checkGraphModeFxOp( self, model, inputs, quant_type, expected_node=None, expected_node_occurrence=None, expected_node_list=None, is_reference=False, print_debug_info=False, custom_qconfig_dict=None, prepare_expected_node=None, prepare_expected_node_occurrence=None, prepare_expected_node_list=None, prepare_custom_config=None, backend_config=None): """ Quantizes model with graph mode quantization on fx and check if the quantized model contains the quantized_node Args: model: floating point torch.nn.Module inputs: one positional sample input arguments for model expected_node: NodeSpec e.g. NodeSpec.call_function(torch.quantize_per_tensor) expected_node_occurrence: a dict from NodeSpec to expected number of occurences (int) e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1, NodeSpec.call_method('dequantize'): 1} expected_node_list: a list of NodeSpec, used to check the order of the occurrence of Node e.g. [NodeSpec.call_function(torch.quantize_per_tensor), NodeSpec.call_module(nnq.Conv2d), NodeSpec.call_function(F.hardtanh_), NodeSpec.call_method('dequantize')] is_reference: if True, enables reference mode print_debug_info: if True, prints debug info custom_qconfig_dict: overrides default qconfig_dict prepare_expected_node: same as expected_node, but for prepare prepare_expected_node_occurrence: same as expected_node_occurrence, but for prepare prepare_expected_node_list: same as expected_node_list, but for prepare Returns: A dictionary with the following structure: { "prepared": ..., # the prepared model "quantized": ..., # the quantized non-reference model "quantized_reference": ..., # the quantized reference model "result": ..., # the result for either quantized or # quantized_reference model depending on the # is_reference arguemnt } """ # TODO: make img_data a single example instead of a list if type(inputs) == list: inputs = inputs[0] if quant_type == QuantType.QAT: qconfig = get_default_qat_qconfig(torch.backends.quantized.engine) model.train() elif quant_type == QuantType.STATIC: qconfig = get_default_qconfig(torch.backends.quantized.engine) model.eval() else: qconfig = default_dynamic_qconfig model.eval() if quant_type == QuantType.QAT: prepare = prepare_qat_fx else: prepare = prepare_fx qconfig_dict = {"": qconfig} # overwrite qconfig_dict with custom_qconfig_dict if custom_qconfig_dict is not None: qconfig_dict = custom_qconfig_dict prepared = prepare( model, qconfig_dict, example_inputs=inputs, prepare_custom_config=prepare_custom_config, backend_config=backend_config) if not quant_type == QuantType.DYNAMIC: prepared(*inputs) if print_debug_info: print() print('quant type:\n', quant_type) print('original model:\n', model) print() print('prepared model:\n', prepared) self.checkGraphModuleNodes( prepared, prepare_expected_node, prepare_expected_node_occurrence, prepare_expected_node_list) prepared_copy = copy.deepcopy(prepared) qgraph = convert_fx(copy.deepcopy(prepared)) qgraph_reference = convert_to_reference_fx(copy.deepcopy(prepared)) result = qgraph(*inputs) result_reference = qgraph_reference(*inputs) qgraph_copy = copy.deepcopy(qgraph) qgraph_reference_copy = copy.deepcopy(qgraph_reference) qgraph_to_check = qgraph_reference if is_reference else qgraph if print_debug_info: print() print('quantized model:\n', qgraph_to_check) self.printGraphModule(qgraph_to_check) print() self.checkGraphModuleNodes( qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list) return {"prepared": prepared_copy, "quantized": qgraph_copy, "quantized_reference": qgraph_reference_copy, "quantized_output": result, "quantized_reference_output": result_reference} def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets, set_qconfig, is_emb_bag, dtype=torch.quint8): # Test serialization of dynamic EmbeddingBag module using state_dict if is_emb_bag: inputs = [indices, offsets] else: inputs = [indices] emb_dict = qemb.state_dict() b = io.BytesIO() torch.save(emb_dict, b) b.seek(0) loaded_dict = torch.load(b) embedding_unpack = torch.ops.quantized.embedding_bag_unpack # Check unpacked weight values explicitly for key in emb_dict: if isinstance(emb_dict[key], torch._C.ScriptObject): assert isinstance(loaded_dict[key], torch._C.ScriptObject) emb_weight = embedding_unpack(emb_dict[key]) loaded_weight = embedding_unpack(loaded_dict[key]) self.assertEqual(emb_weight, loaded_weight) # Check state dict serialization and torch.save APIs if is_emb_bag: loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim, include_last_offset=True, mode='sum', dtype=dtype) else: loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, dtype=dtype) self.check_eager_serialization(qemb, loaded_qemb, inputs) loaded_qemb.load_state_dict(loaded_dict) self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight), embedding_unpack(loaded_qemb._packed_params._packed_weight)) # Test JIT serialization self.checkScriptable(qemb, [inputs], check_save_load=True) # Test from_float call if is_emb_bag: float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim, include_last_offset=True, scale_grad_by_freq=False, mode='sum') else: float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) if set_qconfig: float_qparams_observer = PerChannelMinMaxObserver.with_args(dtype=dtype, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0) float_embedding.qconfig = QConfig(activation=default_dynamic_quant_observer, weight=float_qparams_observer) prepare_dynamic(float_embedding) float_embedding(*inputs) if is_emb_bag: q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding) expected_name = "QuantizedEmbeddingBag" else: q_embeddingbag = nnq.Embedding.from_float(float_embedding) expected_name = "QuantizedEmbedding" q_embeddingbag(*inputs) self.assertTrue(expected_name in str(q_embeddingbag)) class QuantizationLiteTestCase(QuantizationTestCase): def _create_quantized_model(self, model_class: Type[torch.nn.Module], **kwargs): # Creates quantized model for testing mobile script modules qengine = "qnnpack" with override_quantized_engine(qengine): qconfig = torch.ao.quantization.get_default_qconfig(qengine) model = model_class(**kwargs) model = quantize(model, test_only_eval_fn, [self.calib_data]) return model def _compare_script_and_mobile(self, model: torch.nn.Module, input: torch.Tensor): # Compares the numerical outputs for script and lite modules qengine = "qnnpack" with override_quantized_engine(qengine): script_module = torch.jit.script(model) script_module_result = script_module(input) max_retry = 5 for retry in range(1, max_retry + 1): # retries `max_retry` times; breaks iff succeeds else throws exception try: buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter()) buffer.seek(0) mobile_module = _load_for_lite_interpreter(buffer) mobile_module_result = mobile_module(input) torch.testing.assert_close(script_module_result, mobile_module_result) mobile_module_forward_result = mobile_module.forward(input) torch.testing.assert_close(script_module_result, mobile_module_forward_result) mobile_module_run_method_result = mobile_module.run_method("forward", input) torch.testing.assert_close(script_module_result, mobile_module_run_method_result) except AssertionError as e: if retry == max_retry: raise e else: continue break # Below are a series of toy models to use in testing quantization class SingleLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class AnnotatedSingleLayerLinearModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) def forward(self, x): x = self.fc1(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class SingleLayerLinearDynamicModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearAddModel(nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = torch.add(x, 5) x = self.fc2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class RNNDynamicModel(torch.nn.Module): def __init__(self, mod_type): super().__init__() self.qconfig = default_dynamic_qconfig if mod_type == 'GRU': self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float) if mod_type == 'LSTM': self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float) def forward(self, x): x = self.mod(x) return x class RNNCellDynamicModel(torch.nn.Module): def __init__(self, mod_type): super().__init__() self.qconfig = default_dynamic_qconfig if mod_type == 'GRUCell': self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float) if mod_type == 'LSTMCell': self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float) if mod_type == 'RNNReLU': self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float) if mod_type == 'RNNTanh': self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float) def forward(self, x): x = self.mod(x) return x class LSTMwithHiddenDynamicModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float) def forward(self, x, hid): x, hid = self.lstm(x, hid) return x, hid class ConvModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) def forward(self, x): x = self.conv(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class ConvTransposeModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float) def forward(self, x): x = self.conv(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class AnnotatedConvModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.dequant(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class AnnotatedConvTransposeModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.dequant(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class ConvBnModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) def forward(self, x): x = self.conv(x) x = self.bn(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class AnnotatedConvBnModel(torch.nn.Module): def __init__(self): super().__init__() self.qconfig = default_qconfig self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.dequant(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class ConvBnReLUModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class AnnotatedConvBnReLUModel(torch.nn.Module): def __init__(self, qengine='fbgemm'): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float) self.relu = nn.ReLU(inplace=True) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dequant(x) return x def fuse_model(self): # TODO: remove this check and define two fuse_modules function on this module if self.training: torch.ao.quantization.fuse_modules_qat(self, [['conv', 'bn', 'relu']], inplace=True) else: torch.ao.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True) def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class TwoLayerConvModel(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float) self.conv2 = torch.nn.Conv2d(5, 5, 1, bias=False).to(dtype=torch.float) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class TwoLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearModelWithSubmodule(nn.Module): def __init__(self): super().__init__() self.subm = TwoLayerLinearModel() self.fc = nn.Linear(5, 5) def forward(self, x): x = self.subm(x) x = self.fc(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.subm.get_example_inputs() class AnnotatedTwoLayerLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float)) self.fc2.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class ActivationsTestModel(torch.nn.Module): def __init__(self): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") self.quant = torch.ao.quantization.QuantStub() self.hardswish = torch.nn.Hardswish().to(dtype=torch.float) self.elu = torch.nn.ELU().to(dtype=torch.float) self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.hardswish(x) x = self.elu(x) x = self.dequant(x) return x class LinearReluModel(torch.nn.Module): def __init__(self): super().__init__() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(self.fc(x)) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearReluLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearReluAddModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = torch.add(x, 5) x = self.fc2(x) self.relu = torch.nn.ReLU() return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearBnLeakyReluModel(torch.nn.Module): def __init__(self, with_bn=True): super().__init__() self.linear = nn.Linear(5, 5) self.bn1d = nn.BatchNorm1d(5) self.leaky_relu = nn.LeakyReLU(0.01) self.with_bn = with_bn def forward(self, x): x = self.linear(x) if self.with_bn: x = self.bn1d(x) x = self.leaky_relu(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class LinearTanhModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 5) self.tanh = nn.Tanh() def forward(self, x): x = self.linear(x) x = self.tanh(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class ConvBnAddReluModel(torch.nn.Module): def __init__(self, with_bn=True, with_relu=True, left_conv=True, two_conv=True, use_torch_add=True): super().__init__() self.conv = nn.Conv2d(5, 5, (2, 2)) self.conv2 = nn.Conv2d(5, 5, (2, 2)) self.bn = nn.BatchNorm2d(5) self.relu = nn.ReLU() self.with_bn = with_bn self.with_relu = with_relu self.two_conv = two_conv self.left_conv = left_conv self.use_torch_add = use_torch_add def forward(self, x1, x2): if self.two_conv: if self.use_torch_add: if self.with_bn: x = torch.add(self.bn(self.conv(x1)), self.conv2(x1)) else: x = torch.add(self.conv(x1), self.conv2(x1)) else: if self.with_bn: x = self.bn(self.conv(x1)) + self.conv2(x1) else: x = self.conv(x1) + self.conv2(x1) else: if self.use_torch_add: if self.left_conv: if self.with_bn: x = torch.add(self.bn(self.conv(x1)), x2) else: x = torch.add(self.conv(x1), x2) else: if self.with_bn: x = torch.add(x2, self.bn(self.conv(x1))) else: x = torch.add(x2, self.conv(x1)) else: if self.left_conv: if self.with_bn: x = self.bn(self.conv(x1)) + x2 else: x = self.conv(x1) + x2 else: if self.with_bn: x = x2 + self.bn(self.conv(x1)) else: x = x2 + self.conv(x1) if self.with_relu: x = self.relu(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5, 3, 3), torch.rand(1, 5, 2, 2)) # TODO: self.fc should be self.conv class ConvReluModel(torch.nn.Module): def __init__(self): super().__init__() self.fc = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(self.fc(x)) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) # TODO: self.fc should be self.conv class ConvReluConvModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) # TODO: self.fc should be self.conv class ConvReluAddModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = torch.add(x, 5) x = self.fc2(x) self.relu = torch.nn.ReLU() return x def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class NormalizationTestModel(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.ao.quantization.QuantStub() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.layer_norm = torch.nn.LayerNorm((8)) self.group_norm = torch.nn.GroupNorm(2, 8) self.instance_norm1d = torch.nn.InstanceNorm1d(8) self.instance_norm2d = torch.nn.InstanceNorm2d(8) self.instance_norm3d = torch.nn.InstanceNorm3d(8) def forward(self, x): x = self.quant(x) x = self.fc1(x) x = self.layer_norm(x) x = self.group_norm(x.unsqueeze(-1).repeat(1, 1, 3)) x = self.instance_norm1d(x) x = self.instance_norm2d(x.unsqueeze(-1)) x = self.instance_norm3d(x.unsqueeze(-1)) return x class NestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedNestedModel(torch.nn.Module): def __init__(self, qengine): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.fc1 = QuantWrapper(self.sub2.fc1) if qengine == 'fbgemm': self.sub2.fc1.qconfig = default_per_channel_qconfig else: self.sub2.fc1.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedSubNestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = QuantWrapper(TwoLayerLinearModel()) self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class AnnotatedCustomConfigNestedModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float)) self.fc3.qconfig = default_qconfig self.sub2.qconfig = default_qconfig custom_options = { 'dtype': torch.quint8, 'qscheme': torch.per_tensor_affine } custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options), weight=default_weight_observer) self.sub2.fc1.qconfig = custom_qconfig self.sub2.fc1 = QuantWrapper(self.sub2.fc1) self.sub2.fc2 = QuantWrapper(self.sub2.fc2) def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class QuantSubModel(torch.nn.Module): def __init__(self): super().__init__() self.sub1 = LinearReluModel() self.sub2 = QuantWrapper(TwoLayerLinearModel()) self.sub2.qconfig = default_qconfig self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float) self.fc3.qconfig = default_qconfig def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class InnerModule(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.relu1 = torch.nn.ReLU() self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) self.relu2 = torch.nn.ReLU() def forward(self, x): return self.relu2(self.fc2(self.relu1(self.fc1(x)))) def fuse_modules(self): fusable_layers = [] named_children = list(self.named_children()) for idx, (current_name, layer) in enumerate(named_children): if isinstance(layer, torch.nn.Linear): if idx >= len(named_children) - 1: break if isinstance(named_children[idx + 1][1], torch.nn.ReLU): fusable_layers.append([current_name, named_children[idx + 1][0]]) # TODO: remove this check and define two fuse_modules function on this module if self.training: torch.ao.quantization.fuse_modules_qat(self, fusable_layers, inplace=True) else: torch.ao.quantization.fuse_modules(self, fusable_layers, inplace=True) class FunctionalLinear(torch.nn.Module): def __init__(self): super().__init__() self.weight = torch.rand((5, 5)) self.bias = torch.zeros(5) def forward(self, x): return F.linear(x, self.weight, self.bias) def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 5),) class SingleLayerFunctionalLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = FunctionalLinear() def forward(self, x): x = self.linear1(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.linear1.get_example_inputs() class TwoLayerFunctionalLinearModel(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = FunctionalLinear() self.linear2 = FunctionalLinear() def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.linear1.get_example_inputs() class FunctionalLinearAddModel(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = FunctionalLinear() self.linear2 = FunctionalLinear() def forward(self, x): x = self.linear1(x) x = torch.add(x, 5) x = self.linear2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.linear1.get_example_inputs() class FunctionalLinearReluModel(nn.Module): def __init__(self): super().__init__() self.linear = FunctionalLinear() def forward(self, x): x = self.linear(x) x = F.relu(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.linear.get_example_inputs() class FunctionalLinearReluLinearModel(nn.Module): def __init__(self): super().__init__() self.linear1 = FunctionalLinear() self.relu = nn.ReLU() self.linear2 = FunctionalLinear() def forward(self, x): x = self.linear1(x) x = self.relu(x) x = self.linear2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.linear1.get_example_inputs() class FunctionalConv2d(torch.nn.Module): def __init__(self): super().__init__() self.weight = torch.rand(3, 3, 3, 3) self.bias = torch.rand(3) self.stride = (1, 1) self.padding = (0, 0) self.dilation = (1, 1) self.groups = 1 def forward(self, x): return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def get_example_inputs(self) -> Tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) class SingleLayerFunctionalConvModel(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = FunctionalConv2d() def forward(self, x): x = self.conv1(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.conv1.get_example_inputs() class TwoLayerFunctionalConvModel(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = FunctionalConv2d() self.conv2 = FunctionalConv2d() def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.conv1.get_example_inputs() class FunctionalConvReluModel(nn.Module): def __init__(self): super().__init__() self.conv = FunctionalConv2d() def forward(self, x): x = self.conv(x) x = F.relu(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.conv.get_example_inputs() class FunctionalConvReluConvModel(nn.Module): def __init__(self): super().__init__() self.conv1 = FunctionalConv2d() self.relu = nn.ReLU() self.conv2 = FunctionalConv2d() def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.conv2(x) return x def get_example_inputs(self) -> Tuple[Any, ...]: return self.conv1.get_example_inputs() class SkipQuantModel(torch.nn.Module): r"""We can skip quantization by explicitly setting qconfig of a submodule to None """ def __init__(self): super().__init__() self.sub = InnerModule() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): return self.fc(self.sub(x)) def fuse_modules(self): self.sub.fuse_modules() class AnnotatedSkipQuantModel(torch.nn.Module): r"""We can skip quantization by explicitly setting qconfig of a submodule to None """ def __init__(self, qengine): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig(qengine) self.sub = QuantWrapper(InnerModule()) self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) # don't quantize this fc self.fc.qconfig = None def forward(self, x): return self.fc(self.sub(x)) def fuse_modules(self): self.sub.module.fuse_modules() class QuantStubModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self): super().__init__() self.qconfig = torch.ao.quantization.get_default_qconfig("qnnpack") self.quant = QuantStub() self.dequant = DeQuantStub() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.fc(x) return self.dequant(x) class ManualLinearQATModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self, qengine): super().__init__() self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine) self.quant = QuantStub() self.dequant = DeQuantStub() self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float) self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.fc1(x) x = self.fc2(x) return self.dequant(x) class ManualDropoutQATModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self, qengine): super().__init__() self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine) self.quant = QuantStub() self.dequant = DeQuantStub() self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float) self.dropout = torch.nn.Dropout(0.5) def forward(self, x): x = self.quant(x) x = self.fc1(x) x = self.dropout(x) return self.dequant(x) class ManualLinearDynamicQATModel(torch.nn.Module): r"""A Module that uses a dynamic QAT by default. """ def __init__(self, qconfig=None): super().__init__() self.qconfig = qconfig or default_dynamic_qat_qconfig self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float) self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x class ManualConvLinearQATModel(torch.nn.Module): r"""A module with manually inserted `QuantStub` and `DeQuantStub` and contains both linear and conv modules """ def __init__(self, qconfig=None): super().__init__() self.qconfig = qconfig if qconfig else torch.ao.quantization.get_default_qat_qconfig("qnnpack") self.quant = QuantStub() self.dequant = DeQuantStub() self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float) self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float) self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.conv(x) x = x.view(-1, 64).contiguous() x = self.fc1(x) x = self.fc2(x) return self.dequant(x) class ManualConvLinearSymmQATModel(ManualConvLinearQATModel): r"""Same as ManualConvLinearQATModule but with Symmetric Quantization. Supported only with qnnpack. """ def __init__(self): super().__init__(default_symmetric_qnnpack_qat_qconfig) class ManualEmbeddingBagLinear(nn.Module): def __init__(self): super().__init__() self.emb = nn.EmbeddingBag(num_embeddings=10, embedding_dim=12, mode='sum') self.emb.qconfig = default_embedding_qat_qconfig self.quant = QuantStub() self.dequant = DeQuantStub() self.linear = nn.Linear(12, 1).to(dtype=torch.float) self.qconfig = get_default_qat_qconfig("qnnpack") def forward(self, input: torch.Tensor, offsets: Optional[torch.Tensor] = None, per_sample_weights: Optional[torch.Tensor] = None): x = self.emb(input, offsets, per_sample_weights) x = self.quant(x) x = self.linear(x) return self.dequant(x) class DeFusedEmbeddingBagLinear(nn.Module): r"""A module to simulate QAT embedding bag with a linear layer, this module uses a separate embedding and bagging op, similar to that which is described in the EmbeddingBag documentation. https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html """ def __init__(self) -> None: super().__init__() self.emb = nn.Embedding(num_embeddings=10, embedding_dim=12) self.emb.qconfig = default_embedding_qat_qconfig self.bagging_op = torch.sum self.quant = QuantStub() self.dequant = DeQuantStub() self.linear = nn.Linear(12, 1).to(dtype=torch.float) self.qconfig = get_default_qat_qconfig("qnnpack") def forward(self, input: torch.Tensor) -> torch.Tensor: x = self.bagging_op(self.emb(input), dim=1) x = self.quant(x) x = self.linear(x) return self.dequant(x) class SubModelForFusion(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float) self.bn = nn.BatchNorm2d(2).to(dtype=torch.float) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class SubModelWithoutFusion(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float) self.relu = nn.ReLU(inplace=False).to(dtype=torch.float) def forward(self, x): return self.relu(self.conv(x)) class ModelForFusion(nn.Module): def __init__(self, qconfig): super().__init__() self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float) self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float) self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float) self.sub1 = SubModelForFusion() self.sub2 = SubModelWithoutFusion() self.fc = nn.Linear(36, 10).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() self.qconfig = qconfig self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float) self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float) self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float) self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float) self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float) self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float) self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float) # don't quantize sub2 self.sub2.qconfig = None self.fc.qconfig = None def forward(self, x): x = x.squeeze(2) x = self.quant(x) x = self.conv3(x) x = self.bn3(x) x = self.relu4(x) x = x.unsqueeze(2) y = x.unsqueeze(2) x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.sub1(x) x = self.dequant(x) x = self.sub2(x) x = x.reshape(-1, 36).contiguous() x = self.fc(x) y = self.conv2(y) y = self.relu2(y) y = self.bn2(y) y = self.relu3(y) y = self.dequant(y) return x class ConvBNReLU(nn.Sequential): def __init__(self): super().__init__( nn.Conv2d(3, 3, 1, 1, bias=False), nn.BatchNorm2d(3), nn.ReLU(inplace=False) ) class ModelWithSequentialFusion(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 3, 1) self.relu1 = nn.ReLU(inplace=False) layers = [] for i in range(3): layers.append(ConvBNReLU()) self.features = nn.Sequential(*layers) head = [nn.Linear(300, 10), nn.ReLU(inplace=False)] self.classifier = nn.Sequential(*head) self.seq = nn.Sequential() self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv1(x) x = self.relu1(x) x = self.features(x) x = torch.reshape(x, (-1, 3 * 10 * 10)) x = self.classifier(x) x = self.seq(x) x = self.dequant(x) return x class ModelForFusionWithBias(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float) self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float) self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float) self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float) self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.dequant(x) return x class ModelForLinearBNFusion(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(20, 10) self.bn = nn.BatchNorm1d(10) nn.init.uniform_(self.bn.weight) nn.init.uniform_(self.bn.bias) def forward(self, x): return self.bn(self.fc(x)) class DummyObserver(torch.nn.Module): def calculate_qparams(self): return 1.0, 0 def forward(self, x): return x class ModelForConvTransposeBNFusion(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.ConvTranspose1d(3, 3, 1) self.bn1 = nn.BatchNorm1d(3) self.conv2 = nn.ConvTranspose2d(3, 3, 1) self.bn2 = nn.BatchNorm2d(3) self.conv3 = nn.ConvTranspose3d(3, 3, 1) self.bn3 = nn.BatchNorm3d(3) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = x.unsqueeze(2) x = self.conv2(x) x = self.bn2(x) x = x.unsqueeze(2) x = self.conv3(x) x = self.bn3(x) return x class ModelWithFunctionals(torch.nn.Module): def __init__(self): super().__init__() self.mycat = nnq.FloatFunctional() self.myadd = nnq.FloatFunctional() self.myadd_relu = nnq.FloatFunctional() # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 # self.my_scalar_add = nnq.FloatFunctional() # self.my_scalar_mul = nnq.FloatFunctional() def forward(self, x): y = self.mycat.cat([x, x, x]) z = self.myadd.add(y, y) w = self.myadd_relu.add_relu(z, z) # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 # w = self.my_scalar_add.add_scalar(w, -0.5) # w = self.my_scalar_mul.mul_scalar(w, 0.5) return w class ResNetBase(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.downsample = torch.nn.Identity() self.myop = nn.quantized.FloatFunctional() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = torch.nn.Linear(inplanes, 1) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) identity = self.downsample(x) out = self.myop.add(out, identity) out = self.relu2(out) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.fc(out) return out def fuse_model(self): # TODO: remove this check and define two fuse_model function on this module if self.training: torch.ao.quantization.fuse_modules_qat(self, [['conv1', 'bn1', 'relu1']], inplace=True) else: torch.ao.quantization.fuse_modules(self, [['conv1', 'bn1', 'relu1']], inplace=True) class ModelMultipleOps(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.downsample = torch.nn.Identity() self.skip_add = nn.quantized.FloatFunctional() self.cat = nn.quantized.FloatFunctional() self.avgpool = nn.AdaptiveAvgPool2d((4, 4)) self.fc = nn.Linear(12, 6) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) identity = self.downsample(x) out = self.skip_add.add(out, identity) out = self.relu2(out) out = self.avgpool(out) out = self.conv2(out) out = torch.nn.functional.max_pool2d(out, 2, 2) out = self.cat.cat([out, out]) out = out.reshape(-1, 3 * 2 * 2) out = self.fc(out) return out # Model to ensure consistency of fake quant with true quant # Average pooling and mean operations are not modelled # accurately with fake-quant so this model does not # contain those operations class ModelMultipleOpsNoAvgPool(torch.nn.Module): def __init__(self): super().__init__() norm_layer = nn.BatchNorm2d inplanes = 3 self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False) self.bn1 = norm_layer(inplanes) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.skip_add = nn.quantized.FloatFunctional() self.cat = nn.quantized.FloatFunctional() self.maxpool = nn.MaxPool2d((4, 4)) self.fc = nn.Linear(12, 6) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) skip = self.conv2(x) out = self.skip_add.add(out, skip) out = self.relu2(out) out = self.maxpool(out) out = self.conv2(out) out = torch.nn.functional.max_pool2d(out, 2, 2) out = self.cat.cat([out, out]) out = out.reshape(-1, 3 * 2 * 2) out = self.fc(out) return out class EmbeddingBagModule(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12, include_last_offset=True, scale_grad_by_freq=False, mode='sum') def forward(self, indices, offsets, per_sample_weights): return self.emb(indices, offsets, per_sample_weights) class EmbeddingModule(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12) def forward(self, indices): return self.emb(indices) class EmbeddingWithStaticLinear(torch.nn.Module): def __init__(self): super().__init__() self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12) self.fc = torch.nn.Linear(4, 2) self.emb.qconfig = float_qparams_weight_only_qconfig self.qconfig = default_qconfig self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, indices, offsets, linear_in): emb = self.emb(indices, offsets) q_x = self.quant(linear_in) fc = self.fc(q_x) fc = self.dequant(fc) features = torch.cat([fc] + [emb], dim=1) return features class DenseTopMLP(nn.Module): def __init__(self, dense_dim, dense_out, embedding_dim, top_out_in, top_out_out) -> None: super().__init__() self.dense_mlp = nn.Sequential( nn.Linear(dense_dim, dense_out), ) self.top_mlp = nn.Sequential( nn.Linear(dense_out + embedding_dim, top_out_in), nn.Linear(top_out_in, top_out_out), ) def forward( self, sparse_feature: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: dense_feature = self.dense_mlp(dense) features = torch.cat([dense_feature] + [sparse_feature], dim=1) out = self.top_mlp(features) return out # thin wrapper around embedding bag, because tracing inside nn.Embedding # bag is not supported at the moment and this is top level class EmbBagWrapper(nn.Module): def __init__(self, num_embeddings, embedding_dim): super().__init__() self.emb_bag = nn.EmbeddingBag(num_embeddings, embedding_dim, mode='sum') def forward(self, indices, offsets): return self.emb_bag(indices, offsets) class SparseNNModel(nn.Module): _NUM_EMBEDDINGS = 10 _EMBEDDING_DIM = 5 _DENSE_DIM = 4 _DENSE_OUTPUT = 2 _TOP_OUT_IN = 2 _TOP_OUT_OUT = 2 _TOP_MLP_DIM = 1 def __init__(self) -> None: super().__init__() self.model_sparse = EmbBagWrapper(self._NUM_EMBEDDINGS, self._EMBEDDING_DIM) self.dense_top = DenseTopMLP( self._DENSE_DIM, self._DENSE_OUTPUT, self._EMBEDDING_DIM, self._TOP_OUT_IN, self._TOP_OUT_OUT) def forward( self, sparse_indices: torch.Tensor, sparse_offsets: torch.Tensor, dense: torch.Tensor, ) -> torch.Tensor: sparse_feature = self.model_sparse(sparse_indices, sparse_offsets) out = self.dense_top(sparse_feature, dense) return out