# Owner(s): ["oncall: distributed"] from typing import Tuple import torch import torch.nn as nn class UnitModule(nn.Module): def __init__(self, device: torch.device): super().__init__() self.l1 = nn.Linear(100, 100, device=device) self.seq = nn.Sequential( nn.ReLU(), nn.Linear(100, 100, device=device), nn.ReLU(), ) self.l2 = nn.Linear(100, 100, device=device) def forward(self, x): return self.l2(self.seq(self.l1(x))) class CompositeModel(nn.Module): def __init__(self, device: torch.device): super().__init__() self.l1 = nn.Linear(100, 100, device=device) self.u1 = UnitModule(device) self.u2 = UnitModule(device) self.l2 = nn.Linear(100, 100, device=device) def forward(self, x): return self.l2(self.u2(self.u1(self.l1(x)))) class UnitParamModule(nn.Module): def __init__(self, device: torch.device): super().__init__() self.l = nn.Linear(100, 100, device=device) self.seq = nn.Sequential( nn.ReLU(), nn.Linear(100, 100, device=device), nn.ReLU(), ) self.p = nn.Parameter(torch.randn((100, 100), device=device)) def forward(self, x): return torch.mm(self.seq(self.l(x)), self.p) class CompositeParamModel(nn.Module): def __init__(self, device: torch.device): super().__init__() self.l = nn.Linear(100, 100, device=device) self.u1 = UnitModule(device) self.u2 = UnitModule(device) self.p = nn.Parameter(torch.randn((100, 100), device=device)) def forward(self, x): a = self.u2(self.u1(self.l(x))) b = self.p return torch.mm(a, b) class FakeSequential(nn.Module): # Define this class to achieve a desired nested wrapping using the module # wrap policy with `nn.Sequential` def __init__(self, *modules: Tuple[nn.Module, ...]) -> None: super().__init__() self._module_sequence = list(modules) def forward(self, x: torch.Tensor) -> torch.Tensor: for module in self._module_sequence: x = module(x) return x class NestedSequentialModel(nn.Module): def __init__(self, device: torch.device) -> None: super().__init__() # This nested structure exercises traversal order to catch differences # between valid traversals (e.g. BFS and DFS variations). self.seq1 = nn.Sequential( nn.Linear(1, 1, device=device), FakeSequential( nn.Linear(1, 1, device=device), nn.ReLU(), FakeSequential( nn.Linear(1, 1, device=device), ), nn.ReLU(), ), nn.Linear(1, 2, device=device), ) self.lin = nn.Linear(2, 2, device=device) self.seq2 = nn.Sequential( nn.ReLU(), nn.Linear(2, 3, device=device), FakeSequential( nn.Linear(3, 2, bias=False, device=device), nn.Linear(2, 4, bias=False, device=device), ), ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.seq2(self.lin(self.seq1(x)))