"""This file exports ONNX ops for opset 16. Note [ONNX Operators that are added/updated in opset 16] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-16-of-the-default-onnx-operator-set New operators: GridSample https://github.com/onnx/onnx/pull/3557 Updated operators: Identity If LeakyRelu Loop PRelu RoiAlign Scan ScatterElements ScatterND Where GreaterOrEqual LessOrEqual """ # EDITING THIS FILE? READ THIS FIRST! # see Note [Edit Symbolic Files] in README.md import functools import torch from torch.nn.functional import ( GRID_SAMPLE_INTERPOLATION_MODES, GRID_SAMPLE_PADDING_MODES, ) from torch.onnx import _type_utils, symbolic_helper from torch.onnx._internal import _beartype, jit_utils, registration _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=16) # note (mkozuki): Why `grid_sampler` instead of `grid_sample`? # Because `torch.nn.functional.grid_sample` calls `torch.grid_sampler`. @_onnx_symbolic("aten::grid_sampler") @symbolic_helper.parse_args("v", "v", "i", "i", "b") @_beartype.beartype def grid_sampler( g: jit_utils.GraphContext, input, grid, mode_enum, padding_mode_enum, align_corners, ): # Check the input and grid tensor rank beforehand. if symbolic_helper._get_tensor_rank(input) == 5: return symbolic_helper._onnx_unsupported("GridSample with 5D volumetric input") mode_s = {v: k for k, v in GRID_SAMPLE_INTERPOLATION_MODES.items()}[mode_enum] # type: ignore[call-arg] padding_mode_s = {v: k for k, v in GRID_SAMPLE_PADDING_MODES.items()}[padding_mode_enum] # type: ignore[call-arg] return g.op( "GridSample", input, grid, align_corners_i=int(align_corners), mode_s=mode_s, padding_mode_s=padding_mode_s, ) @_onnx_symbolic("aten::scatter_add") @symbolic_helper.parse_args("v", "i", "v", "v") @_beartype.beartype def scatter_add(g: jit_utils.GraphContext, self, dim, index, src): if symbolic_helper.is_caffe2_aten_fallback(): return g.at("scatter", self, dim, index, src, overload_name="src") src_type = _type_utils.JitScalarType.from_value( src, _type_utils.JitScalarType.UNDEFINED ) src_sizes = symbolic_helper._get_tensor_sizes(src) index_sizes = symbolic_helper._get_tensor_sizes(index) if len(src_sizes) != len(index_sizes): return symbolic_helper._unimplemented( "scatter_add", f"`index` ({index_sizes}) should have the same dimensionality as `src` ({src_sizes})", ) # PyTorch only allows index shape <= src shape, so we can only consider # taking index as subset size to src, like PyTorch does. When sizes for src # and index are not matched or there are dynamic axes, we take index shape to # slice src to accommodate. if src_sizes != index_sizes or None in index_sizes: adjusted_shape = g.op("Shape", index) starts = g.op("Constant", value_t=torch.tensor([0] * len(index_sizes))) src = g.op("Slice", src, starts, adjusted_shape) src = symbolic_helper._maybe_get_scalar(src) if symbolic_helper._is_value(src): return g.op("ScatterElements", self, index, src, axis_i=dim, reduction_s="add") else: # Check if scalar "src" has same type as self (PyTorch allows different # type for scalar src (but not when src is tensor)). If not, insert Cast node. if _type_utils.JitScalarType.from_value(self) != src_type: src = g.op( "Cast", src, to_i=_type_utils.JitScalarType.from_value(self).onnx_type(), ) return g.op( "ScatterElements", self, index, src, axis_i=dim, reduction_s="add", )