import collections from itertools import repeat from typing import List, Dict, Any __all__ = ['consume_prefix_in_state_dict_if_present'] def _ntuple(n, name="parse"): def parse(x): if isinstance(x, collections.abc.Iterable): return tuple(x) return tuple(repeat(x, n)) parse.__name__ = name return parse _single = _ntuple(1, "_single") _pair = _ntuple(2, "_pair") _triple = _ntuple(3, "_triple") _quadruple = _ntuple(4, "_quadruple") def _reverse_repeat_tuple(t, n): r"""Reverse the order of `t` and repeat each element for `n` times. This can be used to translate padding arg used by Conv and Pooling modules to the ones used by `F.pad`. """ return tuple(x for x in reversed(t) for _ in range(n)) def _list_with_default(out_size: List[int], defaults: List[int]) -> List[int]: if isinstance(out_size, int): return out_size if len(defaults) <= len(out_size): raise ValueError( "Input dimension should be at least {}".format(len(out_size) + 1) ) return [ v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size) :]) ] def consume_prefix_in_state_dict_if_present( state_dict: Dict[str, Any], prefix: str ) -> None: r"""Strip the prefix in state_dict in place, if any. ..note:: Given a `state_dict` from a DP/DDP model, a local model can load it by applying `consume_prefix_in_state_dict_if_present(state_dict, "module.")` before calling :meth:`torch.nn.Module.load_state_dict`. Args: state_dict (OrderedDict): a state-dict to be loaded to the model. prefix (str): prefix. """ keys = sorted(state_dict.keys()) for key in keys: if key.startswith(prefix): newkey = key[len(prefix) :] state_dict[newkey] = state_dict.pop(key) # also strip the prefix in metadata if any. if "_metadata" in state_dict: metadata = state_dict["_metadata"] for key in list(metadata.keys()): # for the metadata dict, the key can be: # '': for the DDP module, which we want to remove. # 'module': for the actual model. # 'module.xx.xx': for the rest. if len(key) == 0: continue newkey = key[len(prefix) :] metadata[newkey] = metadata.pop(key)