#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & upsample_linear1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales, grad_input); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales, grad_input); } } // aten::upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & upsample_linear1d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales, at::Tensor & grad_input) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales, grad_input); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales, at::Tensor & grad_input) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales, grad_input); } } // aten::upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & upsample_linear1d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales, grad_input); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales, grad_input); } } // aten::upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!) inline at::Tensor & upsample_linear1d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales, at::Tensor & grad_input) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales, grad_input); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales, at::Tensor & grad_input) { return at::_ops::upsample_linear1d_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales, grad_input); } } // aten::upsample_linear1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None) -> Tensor inline at::Tensor upsample_linear1d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales); } namespace symint { template ::value>> at::Tensor upsample_linear1d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales); } } // aten::upsample_linear1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None) -> Tensor inline at::Tensor upsample_linear1d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward::call(grad_output, output_size, input_size, align_corners, scales); } namespace symint { template ::value>> at::Tensor upsample_linear1d_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_backward::call(grad_output, output_size, input_size, align_corners, scales); } } }