#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor inline at::Tensor upsample_linear1d(const at::Tensor & input, at::OptionalIntArrayRef output_size, bool align_corners, c10::optional> scale_factors) { return at::_ops::upsample_linear1d_vec::call(input, output_size.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*output_size)) : c10::nullopt, align_corners, scale_factors); } namespace symint { template ::value>> at::Tensor upsample_linear1d(const at::Tensor & input, at::OptionalIntArrayRef output_size, bool align_corners, c10::optional> scale_factors) { return at::_ops::upsample_linear1d_vec::call(input, output_size.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*output_size)) : c10::nullopt, align_corners, scale_factors); } } // aten::upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor inline at::Tensor upsample_linear1d_symint(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, bool align_corners, c10::optional> scale_factors) { return at::_ops::upsample_linear1d_vec::call(input, output_size, align_corners, scale_factors); } namespace symint { template ::value>> at::Tensor upsample_linear1d(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, bool align_corners, c10::optional> scale_factors) { return at::_ops::upsample_linear1d_vec::call(input, output_size, align_corners, scale_factors); } } // aten::upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & upsample_linear1d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales, out); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales, out); } } // aten::upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & upsample_linear1d_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales, at::Tensor & out) { return at::_ops::upsample_linear1d_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales, out); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales, at::Tensor & out) { return at::_ops::upsample_linear1d_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales, out); } } // aten::upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & upsample_linear1d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_out::call(self, output_size, align_corners, scales, out); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d_out::call(self, output_size, align_corners, scales, out); } } // aten::upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!) inline at::Tensor & upsample_linear1d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales, at::Tensor & out) { return at::_ops::upsample_linear1d_out::call(self, output_size, align_corners, scales, out); } namespace symint { template ::value>> at::Tensor & upsample_linear1d_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales, at::Tensor & out) { return at::_ops::upsample_linear1d_out::call(self, output_size, align_corners, scales, out); } } // aten::upsample_linear1d(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None) -> Tensor inline at::Tensor upsample_linear1d(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales); } namespace symint { template ::value>> at::Tensor upsample_linear1d(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales); } } // aten::upsample_linear1d(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None) -> Tensor inline at::Tensor upsample_linear1d_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d::call(self, output_size, align_corners, scales); } namespace symint { template ::value>> at::Tensor upsample_linear1d(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional scales=c10::nullopt) { return at::_ops::upsample_linear1d::call(self, output_size, align_corners, scales); } } }