#pragma once // @generated by torchgen/gen.py from DispatchKeyFunction.h // NB: The implementing C++ file is RegisterDispatchKey.cpp // The only #includes we need are for custom classes that have defaults in the C++ API #include #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace compositeimplicitautograd { TORCH_API at::Tensor to(const at::Tensor & self, at::TensorOptions options={}, bool non_blocking=false, bool copy=false, c10::optional memory_format=c10::nullopt); TORCH_API at::Tensor to(const at::Tensor & self, c10::optional dtype, c10::optional layout, c10::optional device, c10::optional pin_memory, bool non_blocking, bool copy, c10::optional memory_format); TORCH_API at::Tensor to(const at::Tensor & self, at::Device device, at::ScalarType dtype, bool non_blocking=false, bool copy=false, c10::optional memory_format=c10::nullopt); TORCH_API at::Tensor to(const at::Tensor & self, at::ScalarType dtype, bool non_blocking=false, bool copy=false, c10::optional memory_format=c10::nullopt); TORCH_API at::Tensor to(const at::Tensor & self, const at::Tensor & other, bool non_blocking=false, bool copy=false, c10::optional memory_format=c10::nullopt); } // namespace compositeimplicitautograd } // namespace at