#pragma once // @generated by torchgen/gen.py from Operator.h #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace _ops { struct TORCH_API miopen_rnn { using schema = ::std::tuple (const at::Tensor &, at::TensorList, int64_t, const at::Tensor &, const c10::optional &, int64_t, int64_t, int64_t, bool, double, bool, bool, at::IntArrayRef, const c10::optional &); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_rnn") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)") static ::std::tuple call(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state); }; struct TORCH_API miopen_rnn_out { using schema = ::std::tuple (const at::Tensor &, at::TensorList, int64_t, const at::Tensor &, const c10::optional &, int64_t, int64_t, int64_t, bool, double, bool, bool, at::IntArrayRef, const c10::optional &, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &); using ptr_schema = schema*; // See Note [static constexpr char* members for windows NVCC] STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::miopen_rnn") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))") static ::std::tuple call(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4); static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4); }; }} // namespace at::_ops