#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor inline at::Tensor layer_norm(const at::Tensor & input, at::IntArrayRef normalized_shape, const c10::optional & weight={}, const c10::optional & bias={}, double eps=1e-05, bool cudnn_enable=true) { return at::_ops::layer_norm::call(input, c10::fromIntArrayRefSlow(normalized_shape), weight, bias, eps, cudnn_enable); } namespace symint { template ::value>> at::Tensor layer_norm(const at::Tensor & input, at::IntArrayRef normalized_shape, const c10::optional & weight={}, const c10::optional & bias={}, double eps=1e-05, bool cudnn_enable=true) { return at::_ops::layer_norm::call(input, c10::fromIntArrayRefSlow(normalized_shape), weight, bias, eps, cudnn_enable); } } // aten::layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor inline at::Tensor layer_norm_symint(const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional & weight={}, const c10::optional & bias={}, double eps=1e-05, bool cudnn_enable=true) { return at::_ops::layer_norm::call(input, normalized_shape, weight, bias, eps, cudnn_enable); } namespace symint { template ::value>> at::Tensor layer_norm(const at::Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional & weight={}, const c10::optional & bias={}, double eps=1e-05, bool cudnn_enable=true) { return at::_ops::layer_norm::call(input, normalized_shape, weight, bias, eps, cudnn_enable); } } }