#pragma once // @generated by torchgen/gen.py from DispatchKeyFunction.h // NB: The implementing C++ file is RegisterDispatchKey.cpp // The only #includes we need are for custom classes that have defaults in the C++ API #include #include #include // Forward declarations of any types needed in the operator signatures. // We can't directly include these classes because it will cause circular include dependencies. // This file is included by TensorBody.h, which defines the Tensor class. #include namespace at { namespace compositeexplicitautograd { TORCH_API at::Tensor embedding(const at::Tensor & weight, const at::Tensor & indices, int64_t padding_idx=-1, bool scale_grad_by_freq=false, bool sparse=false); TORCH_API at::Tensor embedding_symint(const at::Tensor & weight, const at::Tensor & indices, c10::SymInt padding_idx=-1, bool scale_grad_by_freq=false, bool sparse=false); TORCH_API at::Tensor & embedding_out(at::Tensor & out, const at::Tensor & weight, const at::Tensor & indices, int64_t padding_idx=-1, bool scale_grad_by_freq=false, bool sparse=false); TORCH_API at::Tensor & embedding_outf(const at::Tensor & weight, const at::Tensor & indices, int64_t padding_idx, bool scale_grad_by_freq, bool sparse, at::Tensor & out); TORCH_API at::Tensor & embedding_symint_out(at::Tensor & out, const at::Tensor & weight, const at::Tensor & indices, c10::SymInt padding_idx=-1, bool scale_grad_by_freq=false, bool sparse=false); TORCH_API at::Tensor & embedding_symint_outf(const at::Tensor & weight, const at::Tensor & indices, c10::SymInt padding_idx, bool scale_grad_by_freq, bool sparse, at::Tensor & out); } // namespace compositeexplicitautograd } // namespace at