#pragma once // @generated by torchgen/gen.py from Function.h #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { // aten::_fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> () inline void _fused_adamw_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional & grad_scale={}, const c10::optional & found_inf={}) { return at::_ops::_fused_adamw_::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf); } // aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> () inline void _fused_adamw_out(at::TensorList out, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional & grad_scale={}, const c10::optional & found_inf={}) { return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out); } // aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> () inline void _fused_adamw_outf(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional & grad_scale, const c10::optional & found_inf, at::TensorList out) { return at::_ops::_fused_adamw_out::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf, out); } // aten::_fused_adamw(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out) inline ::std::tuple<::std::vector,::std::vector,::std::vector,::std::vector,::std::vector> _fused_adamw(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional & grad_scale={}, const c10::optional & found_inf={}) { return at::_ops::_fused_adamw::call(self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, lr, beta1, beta2, weight_decay, eps, amsgrad, maximize, grad_scale, found_inf); } }