#pragma once #include #include #include #include #include namespace at { namespace native { using namespace at::cuda::detail; // Kernel for fast unfold+copy on volumes template __global__ void vol2col_kernel( const int64_t n, const T* data_vol, const int depth, const int height, const int width, const int ksize_t, const int ksize_h, const int ksize_w, const int pad_t, const int pad_h, const int pad_w, const int stride_t, const int stride_h, const int stride_w, const int dilation_t, const int dilation_h, const int dilation_w, const int depth_col, const int height_col, const int width_col, T* data_col) { CUDA_KERNEL_LOOP(index, n) { auto w_out = index % width_col; index /= width_col; auto h_out = index % height_col; index /= height_col; auto t_out = index % depth_col; auto channel_in = index / depth_col; auto channel_out = channel_in * ksize_t * ksize_h * ksize_w; auto t_in = t_out * stride_t - pad_t; auto h_in = h_out * stride_h - pad_h; auto w_in = w_out * stride_w - pad_w; data_col += ((channel_out * depth_col + t_out) * height_col + h_out) * width_col + w_out; data_vol += ((channel_in * depth + t_in) * height + h_in) * width + w_in; for (int i = 0; i < ksize_t; ++i) { for (int j = 0; j < ksize_h; ++j) { for (int k = 0; k < ksize_w; ++k) { auto t = t_in + i * dilation_t; auto h = h_in + j * dilation_h; auto w = w_in + k * dilation_w; *data_col = (t >= 0 && h >= 0 && w >= 0 && t < depth && h < height && w < width) ? data_vol [i * dilation_t * height * width + j * dilation_h * width + k * dilation_w] : static_cast(0); data_col += depth_col * height_col * width_col; } } } } } template void vol2col( cudaStream_t stream, const T* data_vol, const int channels, const int depth, const int height, const int width, const int depth_col, const int height_col, const int width_col, const int ksize_t, const int ksize_h, const int ksize_w, const int pad_t, const int pad_h, const int pad_w, const int stride_t, const int stride_h, const int stride_w, const int dilation_t, const int dilation_h, const int dilation_w, T* data_col) { // We are going to launch channels * depth_col * height_col * width_col // kernels, each kernel responsible for copying a single-channel grid. // We cast an operand to int64 so that the product will not overflow const auto num_kernels = static_cast(channels) * depth_col * height_col * width_col; // Launch vol2col_kernel<<>>( num_kernels, data_vol, depth, height, width, ksize_t, ksize_h, ksize_w, pad_t, pad_h, pad_w, stride_t, stride_h, stride_w, dilation_t, dilation_h, dilation_w, depth_col, height_col, width_col, data_col); C10_CUDA_KERNEL_LAUNCH_CHECK(); } template __global__ void vol2im_kernel( const int64_t n, const T* data_col, const unsigned depth, const unsigned height, const unsigned width, const unsigned channels, const unsigned kernel_t, const unsigned kernel_h, const unsigned kernel_w, const unsigned pad_t, const unsigned pad_h, const unsigned pad_w, const unsigned stride_t, const unsigned stride_h, const unsigned stride_w, const unsigned dilation_t, const unsigned dilation_h, const unsigned dilation_w, const unsigned depth_col, const unsigned height_col, const unsigned width_col, T* data_vol) { CUDA_KERNEL_LOOP(index, n) { accT val = static_cast(0); const auto w_im = index % width + pad_w; const auto h_im = (index / width) % height + pad_h; const auto t_im = (index / width / height) % depth + pad_t; const auto c_im = index / (width * height * depth); auto kernel_extent_w = (kernel_w - 1) * dilation_w + 1; auto kernel_extent_h = (kernel_h - 1) * dilation_h + 1; auto kernel_extent_t = (kernel_t - 1) * dilation_t + 1; // compute the start and end of the output const auto w_col_start = (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; const auto w_col_end = std::min(w_im / stride_w + 1, width_col); const auto h_col_start = (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; const auto h_col_end = std::min(h_im / stride_h + 1, height_col); const auto t_col_start = (t_im < kernel_extent_t) ? 0 : (t_im - kernel_extent_t) / stride_t + 1; const auto t_col_end = std::min(t_im / stride_t + 1, depth_col); // TODO: use LCM of stride and dilation to avoid unnecessary loops for (unsigned t_col = t_col_start; t_col < t_col_end; t_col += 1) { for (unsigned h_col = h_col_start; h_col < h_col_end; h_col += 1) { for (unsigned w_col = w_col_start; w_col < w_col_end; w_col += 1) { uint64_t t_k = (t_im - t_col * stride_t); uint64_t h_k = (h_im - h_col * stride_h); uint64_t w_k = (w_im - w_col * stride_w); if (t_k % dilation_t == 0 && h_k % dilation_h == 0 && w_k % dilation_w == 0) { t_k /= dilation_t; h_k /= dilation_h; w_k /= dilation_w; const int64_t idx_k = ((c_im * kernel_t + t_k) * kernel_h + h_k) * kernel_w + w_k; const int64_t data_col_index = ((idx_k * depth_col + t_col) * height_col + h_col) * width_col + w_col; val += data_col[data_col_index]; } } } } data_vol[index] = static_cast(val); } } template void col2vol( cudaStream_t stream, const T* data_col, const int64_t channels, const int64_t depth, const int64_t height, const int64_t width, const int64_t output_depth, const int64_t output_height, const int64_t output_width, const int64_t patch_t, const int64_t patch_h, const int64_t patch_w, const int64_t pad_t, const int64_t pad_h, const int64_t pad_w, const int64_t stride_t, const int64_t stride_h, const int64_t stride_w, const int64_t dilation_t, const int64_t dilation_h, const int64_t dilation_w, T* data_vol) { const auto num_kernels = channels * depth * height * width; auto check_fits_in_unsigned = [](int64_t val, const char * name) { constexpr auto umax = std::numeric_limits::max(); TORCH_CHECK(val >= 0 && val <= umax, name, " must fit in a 32-bit unsigned value"); }; check_fits_in_unsigned(num_kernels, "input size"); check_fits_in_unsigned( channels * patch_t * patch_h * patch_w, "channels x kernel size"); // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. vol2im_kernel <<>>( num_kernels, data_col, depth, height, width, channels, patch_t, patch_h, patch_w, pad_t, pad_h, pad_w, stride_t, stride_h, stride_w, dilation_t, dilation_h, dilation_w, output_depth, output_height, output_width, data_vol); C10_CUDA_KERNEL_LAUNCH_CHECK(); } } // namespace native } // namespace at