#pragma once #include #include #include #include namespace at { namespace native { using namespace at::cuda::detail; // Kernel for fast unfold+copy // (borrowed from Caffe: // https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu) // CUDA_NUM_THREADS = 1024 template C10_LAUNCH_BOUNDS_1(1024) __global__ void im2col_kernel( const int64_t n, const dt* data_im, const int64_t height, const int64_t width, const int64_t kernel_height, const int64_t kernel_width, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, const int64_t height_col, const int64_t width_col, dt* data_col) { CUDA_KERNEL_LOOP(index, n) { int64_t w_out = index % width_col; int64_t idx = index / width_col; int64_t h_out = idx % height_col; int64_t channel_in = idx / height_col; int64_t channel_out = channel_in * kernel_height * kernel_width; int64_t h_in = h_out * stride_height - pad_height; int64_t w_in = w_out * stride_width - pad_width; dt* col = data_col + (channel_out * height_col + h_out) * width_col + w_out; const dt* im = data_im + (channel_in * height + h_in) * width + w_in; for (int64_t i = 0; i < kernel_height; ++i) { for (int64_t j = 0; j < kernel_width; ++j) { int64_t h = h_in + i * dilation_height; int64_t w = w_in + j * dilation_width; *col = (h >= 0 && w >= 0 && h < height && w < width) ? im[i * dilation_height * width + j * dilation_width] : static_cast
(0); col += height_col * width_col; } } } } template void im2col( cudaStream_t stream, const dt* data_im, const int64_t channels, const int64_t height, const int64_t width, const int64_t height_col, const int64_t width_col, const int64_t kernel_height, const int64_t kernel_width, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, dt* data_col) { // We are going to launch channels * height_col * width_col kernels, each // kernel responsible for copying a single-channel grid. int64_t num_kernels = channels * height_col * width_col; // Launch CUDA_NUM_THREADS = 1024 im2col_kernel<<>>( num_kernels, data_im, height, width, kernel_height, kernel_width, pad_height, pad_width, stride_height, stride_width, dilation_height, dilation_width, height_col, width_col, data_col); C10_CUDA_KERNEL_LAUNCH_CHECK(); } template __forceinline__ __device__ void col2im_device( const int64_t index, const dt* data_col, const int64_t height, const int64_t width, const int64_t channels, const int64_t kernel_h, const int64_t kernel_w, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, const int64_t height_col, const int64_t width_col, dt* data_im) { accT val = static_cast(0); const int64_t w_im = index % width + pad_width; const int64_t h_im = (index / width) % height + pad_height; const int64_t c_im = index / (width * height); int64_t kernel_extent_w = (kernel_w - 1) * dilation_width + 1; int64_t kernel_extent_h = (kernel_h - 1) * dilation_height + 1; // compute the start and end of the output const int64_t w_col_start = (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_width + 1; const int64_t w_col_end = ::min(w_im / stride_width + 1, width_col); const int64_t h_col_start = (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_height + 1; const int64_t h_col_end = ::min(h_im / stride_height + 1, height_col); // TODO: use LCM of stride and dilation to avoid unnecessary loops for (int64_t h_col = h_col_start; h_col < h_col_end; h_col += 1) { for (int64_t w_col = w_col_start; w_col < w_col_end; w_col += 1) { int64_t h_k = (h_im - h_col * stride_height); int64_t w_k = (w_im - w_col * stride_width); if (h_k % dilation_height == 0 && w_k % dilation_width == 0) { h_k /= dilation_height; w_k /= dilation_width; int64_t data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * height_col + h_col) * width_col + w_col; val += data_col[data_col_index]; } } } data_im[index] = static_cast
(val); } template C10_LAUNCH_BOUNDS_1(512) __global__ void col2im_kernel( const int64_t n, const dt* data_col, const int64_t height, const int64_t width, const int64_t channels, const int64_t kernel_h, const int64_t kernel_w, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, const int64_t height_col, const int64_t width_col, dt* data_im) { CUDA_KERNEL_LOOP(index, n) { col2im_device( index, data_col, height, width, channels, kernel_h, kernel_w, pad_height, pad_width, stride_height, stride_width, dilation_height, dilation_width, height_col, width_col, data_im); } } template void col2im( cudaStream_t stream, const dt* data_col, const int64_t channels, const int64_t height, const int64_t width, const int64_t height_col, const int64_t width_col, const int64_t patch_height, const int64_t patch_width, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, dt* data_im) { int64_t num_kernels = channels * height * width; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. // CUDA_NUM_THREADS = 1024 col2im_kernel <<>>( num_kernels, data_col, height, width, channels, patch_height, patch_width, pad_height, pad_width, stride_height, stride_width, dilation_height, dilation_width, height_col, width_col, data_im); C10_CUDA_KERNEL_LAUNCH_CHECK(); } template C10_LAUNCH_BOUNDS_1(512) __global__ void col2im_batched_kernel( const int64_t n, const dt* data_col, const int64_t col_batch_stride, const int64_t nbatch, const int64_t height, const int64_t width, const int64_t channels, const int64_t kernel_h, const int64_t kernel_w, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, const int64_t height_col, const int64_t width_col, dt* data_im, const int64_t im_batch_stride) { using accT = at::acc_type; const auto im_numel = n * nbatch; CUDA_KERNEL_LOOP_TYPE(index, im_numel, int64_t) { const auto ibatch = index / n; const auto slice_index = index % n; col2im_device( slice_index, data_col + ibatch * col_batch_stride, height, width, channels, kernel_h, kernel_w, pad_height, pad_width, stride_height, stride_width, dilation_height, dilation_width, height_col, width_col, data_im + ibatch * im_batch_stride); } } template void col2im_batched( cudaStream_t stream, const dt* data_col, const int64_t col_batch_stride, const int64_t nbatch, const int64_t channels, const int64_t height, const int64_t width, const int64_t height_col, const int64_t width_col, const int64_t patch_height, const int64_t patch_width, const int64_t pad_height, const int64_t pad_width, const int64_t stride_height, const int64_t stride_width, const int64_t dilation_height, const int64_t dilation_width, dt* data_im, const int64_t im_batch_stride) { const int64_t num_kernels = channels * height * width; const int64_t output_numel = nbatch * num_kernels; if (output_numel == 0) { return; // No work to do } // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. // CUDA_NUM_THREADS = 1024 col2im_batched_kernel<<>>( num_kernels, data_col, col_batch_stride, nbatch, height, width, channels, patch_height, patch_width, pad_height, pad_width, stride_height, stride_width, dilation_height, dilation_width, height_col, width_col, data_im, im_batch_stride); C10_CUDA_KERNEL_LAUNCH_CHECK(); } } // namespace native } // namespace at