#pragma once #include #include #include #include #include #include #include namespace { int log2_ceil(int value) { int log2_value = 0; while ((1 << log2_value) < value) ++log2_value; return log2_value; } template struct Add { __device__ __forceinline__ T operator()(T a, T b) const { return a + b; } }; template struct Max { __device__ __forceinline__ T operator()(T a, T b) const { return a < b ? b : a; } }; template class ReduceOp> __device__ __forceinline__ void warp_reduce(acc_t* sum) { ReduceOp r; #pragma unroll for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) { #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { acc_t b = WARP_SHFL_XOR(sum[i], offset, WARP_SIZE); sum[i] = r(sum[i], b); } } } // The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension. // Each sample contains element_count scalar elements. element_count can be any integer value <= 1024. // The template arguments have the following meaning: // One "WARP" works on one "BATCH". One "BATCH" contains "WARP_BATCH" samples. // WARP_BATCH is equal to 1 when element_count is large, and > 1 when element_count is small. // A "WARP" contains "C10_WARPS_SIZE" threads, these treads are guaranteed to belong to the same warp. // This is important because it means only __shfl_ instructions are required for reductions. // Note that this means WARP_SIZE must be a power of two and <= architecture warp size. // CUDA warp size is 32 for all existing GPU architectures, but there is no guarantee this will not change for future arch. // ROCm warp size is 64 for all currently ROCm-supported GPU architectures, but this may change for future archs. // is_log_softmax is a flag indicating whether SoftMax or LogSoftMax should be computed. // is_masked is a flag indicating whether SoftMax or MaskedSoftMax should be computed. // The template can be instantiated with any floating point type for the type arguments input_t, output_t and acc_t. // This allows SoftMax to be fused with a cast immediately following the SoftMax. // The mask should have the same shape as input, with a boolean indicate if the value is masked. // The head_chunk_size is only used for transformer mask softmax, equals to H * D * D. // For instance: // input_t=half, acc_t=float, output_t=half => read half tensor, float accumulators, write half tensor. // input_t=half, acc_t=float, output_t=float => read half tensor, float accumulators, write float tensor. // input_t_float, acc_t=float, output_t=half => read float tensor, float accumulators, write half tensor. template __global__ void softmax_warp_forward(output_t *dst, const input_t *src, int batch_size, int stride, int element_count, const bool *mask = nullptr, const int head_chunk_size = -1, bool is_transformer_mask = false) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_forward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; // batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the batch int local_idx = threadIdx.x; int idx_offset = first_batch * stride + local_idx; src += idx_offset; dst += idx_offset; if (is_transformer_mask) { mask += ((first_batch * stride) / head_chunk_size) * stride + local_idx; } else { mask += idx_offset; } // The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop, // but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep // the nested loops. // This should have no impact on performance because the loops are unrolled anyway. // load data from global memory acc_t elements[WARP_BATCH][WARP_ITERATIONS]; for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; for (int it = 0; it < WARP_ITERATIONS; ++it) { int element_index = local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { elements[i][it] = src[i*element_count+it*WARP_SIZE]; } else { elements[i][it] = -std::numeric_limits::infinity(); } } } // compute max_value acc_t max_value[WARP_BATCH]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; bool is_meaningful_max = false; max_value[i] = elements[i][0]; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { if (is_masked) { int idx = it*WARP_SIZE; if ((idx + local_idx) < batch_element_count) { if (!is_transformer_mask) { idx += i*element_count; } if (!mask[idx]) { max_value[i] = (is_meaningful_max && max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it]; is_meaningful_max = true; } } } else { max_value[i] = max_value[i] > elements[i][it] ? max_value[i] : elements[i][it]; } } if (is_masked) { if (!is_meaningful_max) { max_value[i] = -std::numeric_limits::infinity(); } } } warp_reduce(max_value); acc_t sum[WARP_BATCH] { 0.0f }; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { if (!is_masked) { if (is_log_softmax) { sum[i] += std::exp(elements[i][it] - max_value[i]); } else { elements[i][it] = std::exp(elements[i][it] - max_value[i]); sum[i] += elements[i][it]; } } else { int idx = it*WARP_SIZE; bool valid = (idx + local_idx) < batch_element_count; if (!is_transformer_mask) { idx += i*element_count; } if (valid) { if (!mask[idx]) { if (is_log_softmax) { sum[i] += std::exp(elements[i][it] - max_value[i]); } else { elements[i][it] = std::exp(elements[i][it] - max_value[i]); sum[i] += elements[i][it]; } } else { if (!is_log_softmax) { // Masked values are treated as -infinity, and std::exp(-infinity) is 0. elements[i][it] = 0; } } } else { if (!is_log_softmax) { elements[i][it] = 0.; } } } } } warp_reduce(sum); // store result #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; if (is_log_softmax) sum[i] = std::log(sum[i]); #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { int element_index = local_idx + it * WARP_SIZE; if (element_index < element_count) { if (is_log_softmax) { dst[i*element_count+it*WARP_SIZE] = elements[i][it] - max_value[i] - sum[i]; } else if (sum[i] == 0) { dst[i*element_count+it*WARP_SIZE] = std::numeric_limits::quiet_NaN(); } else { dst[i*element_count+it*WARP_SIZE] = elements[i][it] / sum[i]; } } else { break; } } } } template __global__ void softmax_warp_backward(output_t *gradInput, const input_t *grad, const input_t *output, int batch_size, int stride, int element_count, const bool *mask = nullptr) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_backward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; // batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the batch int local_idx = threadIdx.x % WARP_SIZE; // the first element to process by the current thread int thread_offset = first_batch * stride + local_idx; grad += thread_offset; output += thread_offset; gradInput += thread_offset; if (is_masked) { mask += thread_offset; } // The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop, // but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep // the nested loops. // This should have no impact on performance because the loops are unrolled anyway. // load data from global memory acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS]; acc_t output_reg[WARP_BATCH][WARP_ITERATIONS]; for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; for (int it = 0; it < WARP_ITERATIONS; ++it) { int element_index = local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { grad_reg[i][it] = grad[i*element_count+it*WARP_SIZE]; output_reg[i][it] = output[i*element_count+it*WARP_SIZE]; } else { grad_reg[i][it] = acc_t(0); output_reg[i][it] = acc_t(0); } } } acc_t sum[WARP_BATCH] { 0.0f }; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { if (!is_masked || !mask[i*element_count+it*WARP_SIZE]) { sum[i] += grad_reg[i][it]; } } } warp_reduce(sum); // store result #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { int element_index = local_idx + it * WARP_SIZE; if (element_index < element_count) { if (is_masked && mask[i*element_count+it*WARP_SIZE]) { gradInput[i*element_count+it*WARP_SIZE] = 0; } // compute gradients else if (is_log_softmax) { gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - std::exp(output_reg[i][it]) * sum[i]); } else { gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - output_reg[i][it] * sum[i]); } } } } } } // end of anonymous namespace template void dispatch_softmax_forward(output_t *dst, const input_t *src, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr, int chunk_size = -1, bool is_transformer_mask = false) { TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 ); if (softmax_elements == 0) { return; } else { int log2_elements = log2_ceil(softmax_elements); const int next_power_of_two = 1 << log2_elements; // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward. int warp_size = at::cuda::warp_size(); warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size; // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; int blocks = (batch_count + batches_per_block - 1) / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { #define LAUNCH_SOFTMAX_WARP_FORWARD(L2E) case L2E: \ softmax_warp_forward \ <<>>(dst, \ src, batch_count, softmax_elements_stride, softmax_elements, mask, chunk_size, is_transformer_mask); \ C10_CUDA_KERNEL_LAUNCH_CHECK(); \ break; LAUNCH_SOFTMAX_WARP_FORWARD(0); // 1 LAUNCH_SOFTMAX_WARP_FORWARD(1); // 2 LAUNCH_SOFTMAX_WARP_FORWARD(2); // 4 LAUNCH_SOFTMAX_WARP_FORWARD(3); // 8 LAUNCH_SOFTMAX_WARP_FORWARD(4); // 16 LAUNCH_SOFTMAX_WARP_FORWARD(5); // 32 LAUNCH_SOFTMAX_WARP_FORWARD(6); // 64 LAUNCH_SOFTMAX_WARP_FORWARD(7); // 128 LAUNCH_SOFTMAX_WARP_FORWARD(8); // 256 LAUNCH_SOFTMAX_WARP_FORWARD(9); // 512 LAUNCH_SOFTMAX_WARP_FORWARD(10); ; // 1024 default: break; } } } template void dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const input_t *output, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr) { TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 ); if (softmax_elements == 0) { return; } else { int log2_elements = log2_ceil(softmax_elements); const int next_power_of_two = 1 << log2_elements; // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward. int warp_size = at::cuda::warp_size(); warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size; // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; int blocks = (batch_count + batches_per_block - 1) / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { #define LAUNCH_SOFTMAX_WARP_BACKWARD(L2E) case L2E: \ softmax_warp_backward \ <<>> \ (grad_input, grad, output, batch_count, softmax_elements_stride, \ softmax_elements, mask); \ C10_CUDA_KERNEL_LAUNCH_CHECK(); \ break; LAUNCH_SOFTMAX_WARP_BACKWARD(0); // 1 LAUNCH_SOFTMAX_WARP_BACKWARD(1); // 2 LAUNCH_SOFTMAX_WARP_BACKWARD(2); // 4 LAUNCH_SOFTMAX_WARP_BACKWARD(3); // 8 LAUNCH_SOFTMAX_WARP_BACKWARD(4); // 16 LAUNCH_SOFTMAX_WARP_BACKWARD(5); // 32 LAUNCH_SOFTMAX_WARP_BACKWARD(6); // 64 LAUNCH_SOFTMAX_WARP_BACKWARD(7); // 128 LAUNCH_SOFTMAX_WARP_BACKWARD(8); // 256 LAUNCH_SOFTMAX_WARP_BACKWARD(9); // 512 LAUNCH_SOFTMAX_WARP_BACKWARD(10); // 1024 default: break; } } }