#pragma once #include #include #include #include namespace at { namespace native { // See note [Jiterator] // TODO: elaborate in this comment on the structure of math.cuh #if AT_USE_JITERATOR() const auto ndtri_string = jiterator_stringify( /* * This function is derived from the implementation of the digamma function in the Cephes Math Library. * See note [3-Clause BSD License for the Cephes Math Library]. * * Evaluates polynomial of degree N: * * 2 N * y = C + C x + C x +...+ C x * 0 1 2 N * * Coefficients are stored in reverse order: * * coef[0] = C , ..., coef[N] = C . * N 0 */ template T polevl(const T x, const T A[], const int len) { // NOTE: This `polevl` is different from other `polevl` // implementation (in PyTorch) which expect the `len` to be // `len(A) - 1` instead of `len(A)`. T result = 0; for (int i = 0; i < len; ++i) { result = result * x + A[i]; } return result; } /* * This function is derived from the implementation of the i1e function in the Cephes Math Library. * See note [3-Clause BSD License for the Cephes Math Library]. * * Computes the argument, x, for which the area under the Gaussian probability density function * (integrated from minus infinity to x) is equal to y. */ template T ndtri(T y0) { constexpr T zero = 0; constexpr T one = 1; // Handles special cases if (y0 == zero) { return NEG_INFINITY; } if (y0 == one) { return POS_INFINITY; } if (y0 < zero || y0 > one) { return NAN; } bool code = true; T y = y0; // Note: the constant 0.135... is equal to exp(-2) if (y > one - T{0.13533528323661269189}) { y = one - y; code = false; } if (y > T{0.13533528323661269189}) { /* approximation for 0 <= |y - 0.5| <= 3/8 */ static const T P0[5] = { -5.99633501014107895267E1, 9.80010754185999661536E1, -5.66762857469070293439E1, 1.39312609387279679503E1, -1.23916583867381258016E0, }; static const T Q0[9] = { 1.00000000000000000000E0, 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1, -2.25462687854119370527E2, 2.00260212380060660359E2, -8.20372256168333339912E1, 1.59056225126211695515E1, -1.18331621121330003142E0, }; /* sqrt(2pi) */ constexpr T s2pi = 2.50662827463100050242E0; y = y - T{0.5}; const T y2 = y * y; T x = y + y * (y2 * polevl(y2, P0, int{5}) / polevl(y2, Q0, int{9})); return x * s2pi; } T x = sqrt(T{-2.} * log(y)); const T x0 = x - (log(x) / x); const T z = one / x; T x1; /* y > exp(-32) = 1.2664165549e-14 */ if (x < T{8.0}) { /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */ static const T P1[9] = { 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0, -1.40256079171354495875E-1, -3.50424626827848203418E-2, -8.57456785154685413611E-4, }; static const T Q1[9] = { 1.00000000000000000000E0, 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0, -1.42182922854787788574E-1, -3.80806407691578277194E-2, -9.33259480895457427372E-4, }; x1 = z * polevl(z, P1, int{9}) / polevl(z, Q1, int{9}); } else { /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */ static const T P2[9] = { 3.23774891776946035970E0, 6.91522889068984211695E0, 3.93881025292474443415E0, 1.33303460815807542389E0, 2.01485389549179081538E-1, 1.23716634817820021358E-2, 3.01581553508235416007E-4, 2.65806974686737550832E-6, 6.23974539184983293730E-9, }; static const T Q2[9] = { 1.00000000000000000000E0, 6.02427039364742014255E0, 3.67983563856160859403E0, 1.37702099489081330271E0, 2.16236993594496635890E-1, 1.34204006088543189037E-2, 3.28014464682127739104E-4, 2.89247864745380683936E-6, 6.79019408009981274425E-9, }; x1 = z * polevl(z, P2, int{9}) / polevl(z, Q2, int{9}); } x = x0 - x1; return (!code) ? x : -x; } ); // ndtri_string const auto log_ndtr_string = jiterator_stringify( template T log_ndtr(T x) { constexpr T SQRT1_2{0.707106781186547524400844362104849039}; // 1/sqrt(2) T t = x * SQRT1_2; if (x < T{-1.0}) { return log(erfcx(-t) / 2) - t * t; } else { return log1p(-erfc(t) / 2); } } ); // log_ndtr_string const auto gcd_string = jiterator_stringify( template T gcd(const T a_in, const T b_in) { T a = abs(a_in); T b = abs(b_in); while (a != T{0}) { T c = a; a = b % a; b = c; } return b; } ); // gcd_string const auto lcm_string = jiterator_stringify( template T gcd(const T a_in, const T b_in) { T a = abs(a_in); T b = abs(b_in); while (a != T{0}) { T c = a; a = b % a; b = c; } return b; } template T lcm(const T a, const T b) { T g = gcd(a, b); return (g == T{0}) ? T{0} : abs(a / g * b); } ); // lcm_string /* * For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h". */ // [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma const auto digamma_string = jiterator_stringify( template T digamma(T x) { static const double PI_f64 = 3.14159265358979323846; // Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard if (x == 0) { return copysign(POS_INFINITY, -x); } T result = 0; if (x < 0) { // Short-circuits if x is a negative integer and returns NaN // per the C++ standard const bool x_is_integer = (x == trunc(x)); if (x_is_integer) { return NAN; } // Extracts the fractional part of x as r, since tan(pi * r) is more numerically // accurate than tan(pi * x). While these operations are mathematically equivalent // since both x and r are in radians and tan() has a periodicity of pi, in practice // the computation of pi * x is a source of error (when |x| > 1). double q, r; r = modf(static_cast(x), &q); result = - PI_f64 / tan(PI_f64 * r); x = 1 - x; } while (x < T{10}) { result -= T{1} / x; x += T{1}; } if (x == T{10}) { return result + T{2.25175258906672110764}; } T y = 0; if (x < T{1.0e17}) { const T A[] = { 8.33333333333333333333E-2, -2.10927960927960927961E-2, 7.57575757575757575758E-3, -4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3, 8.33333333333333333333E-2, }; T z = T{1} / (x * x); T polevl_result = 0; for (int i = 0; i <= 6; i++) { polevl_result = polevl_result * z + A[i]; } y = z * polevl_result; } return log(x) - (T{0.5} / x) - y + result; } ); // digamma_string /* * This function is derived from the implementation of the zeta function in the Cephes Math Library. * See note [3-Clause BSD License for the Cephes Math Library]. */ const auto zeta_string = jiterator_stringify( template T zeta(T x, T q) { const T MACHEP{1.11022302462515654042E-16}; constexpr T zero{0}; constexpr T half{0.5}; constexpr T one{1}; static const T A[] = { 12.0, -720.0, 30240.0, -1209600.0, 47900160.0, -1.8924375803183791606e9, /*1.307674368e12/691*/ 7.47242496e10, -2.950130727918164224e12, /*1.067062284288e16/3617*/ 1.1646782814350067249e14, /*5.109094217170944e18/43867*/ -4.5979787224074726105e15, /*8.028576626982912e20/174611*/ 1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/ -7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/ }; int i = 0; T a, b, k, s, t, w; // Short-circuits x -> +infty if (x == one) { return POS_INFINITY; } // Short-circuits x < 1 -> NaN if (x < one) { return NAN; } // Short-circuits negative q integers map to +infty, // negative q non-integers map to NaN if (q <= zero) { if (q == floor(q)) { return POS_INFINITY; } if (x != floor(x)) { return NAN; } } s = pow(q, -x); a = q; i = 0; b = zero; while ((i < 9) || (a <= T{9.0})) { i += 1; a += one; b = pow(a, -x); s += b; if ((-MACHEP * s < b) && (b < MACHEP * s)) { return s; } }; w = a; s += b * w / (x - one); s -= half * b; a = one; k = zero; for (int i = 0; i < 12; i++) { a *= x + k; b /= w; t = a * b / A[i]; s = s + t; t = fabs(t / s); if (t < MACHEP) { return s; } k += one; a *= x + k; b /= w; k += one; } return s; } ); // zeta_string const auto trigamma_string = jiterator_stringify( template T trigamma(T x) { const T PI{3.14159265358979323846}; T sign = 1; T result = 0; if (x < T{0.5}) { sign = -1; T sin_pi_x = sin(PI * x); result -= (PI * PI) / (sin_pi_x * sin_pi_x); x = 1 - x; } for (int i = 0; i < 6; ++i) { result += T{1} / (x * x); x += 1; } const T one{1}; const T ixx = one / (x*x); result += (one + one / (T{2}*x) + ixx * (one/T{6} - ixx * (one/T{30} - ixx * (one/T{42})))) / x; return sign * result; } ); // trigamma_string const auto lgamma_string = jiterator_stringify( template T lgamma_kernel(T a) { return lgamma(a); } ); // lgamma_string const auto polygamma_string = zeta_string + jiterator_stringify( template T polygamma(T x, int n) { // already blocked if n <= 1 const auto one = T{1}; return ((n % 2) ? one : -one) * exp(lgamma(static_cast(n) + one)) * zeta(static_cast(n + 1), x); } ); // polygamma_string const auto exp2_string = jiterator_stringify( template T exp2_impl(T a) { return exp2(a); } namespace std { template class complex; } template std::complex exp2_impl(std::complex x) { // There is no std::exp2 overload for complex, so instead // use the identity 2^x = e^(ln(2) * x) const auto ln_2 = static_cast(0.693147180559945309417232121458176); return exp(ln_2 * x); } template T exp2_kernel(T a) { return exp2_impl(a); } ); // exp2_string const auto erfc_string = jiterator_stringify( template T erfc_kernel(T a) { return erfc(a); } ); // erfc_string const auto erfinv_string = jiterator_stringify( template T erfinv_kernel(T a) { return erfinv(a); } ); // erfinv_string const auto entr_string = jiterator_stringify( template T entr(T a) { if (a != a) { return a; } if (a > 0) { return -a * log(a); } if (a == 0) { return 0; } return NEG_INFINITY; } ); // entr_string // NOTE: `kaiser_window_string` depends on `i0_string` // for its implementation. const auto i0_string = jiterator_stringify( template T chbevl(T x, const T array[], const int len) { T b0, b1, b2; b0 = array[0]; b1 = 0; for (int i = 1; i < len; ++i) { b2 = b1; b1 = b0; b0 = x * b1 - b2 + array[i]; } return T{0.5} * (b0 - b2); } template T i0(T _x) { T x = fabs(_x); if (x <= T{8.0}) { /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ static const T A[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1}; T y = (x / T{2.0}) - T{2.0}; return exp(x) * chbevl(y, A, int{30}); } // Handles x > 8 case /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ const T B[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1}; return (exp(x) * chbevl(T{32.0} / x - T{2.0}, B, int{25})) / sqrt(x); } ); // i0_string const auto i1_string = jiterator_stringify( template T chbevl(const T x, const T array[], const int len) { T b0, b1, b2; b0 = array[0]; b1 = 0; for (int i = 1; i < len; ++i) { b2 = b1; b1 = b0; b0 = x * b1 - b2 + array[i]; } return T{0.5} * (b0 - b2); } template T i1(T _x) { const T x = fabs(_x); if (x <= T{8.0}) { // Chebyshev coefficients for exp(-x) i1(x) in the internal [0, 8] // lim(x->0){ exp(-x) i1(x) / x } = 1/2 static const T coefficients[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1}; const T y = x / T{2.0} - T{2.0}; const T out = exp(x) * x * chbevl(y, coefficients, int{29}); return (_x < T{0.0}) ? -out : out; } // Chebyshev coefficients for exp(-x) sqrt(x) i1(x) // in the inverted interval [8, infinity] // lim(x->inf){ exp(-x) sqrt(x) i1(x) } = 1/sqrt(2pi) static const T coefficients[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1}; const T out = (exp(x) * chbevl(T{32.} / x - T{2.}, coefficients, int{25})) / sqrt(x); return (_x < T{0.}) ? -out : out; } ); // i1_string const auto i1e_string = jiterator_stringify( template T chbevl(const T x, const T array[], const int len) { T b0, b1, b2; b0 = array[0]; b1 = 0; for (int i = 1; i < len; ++i) { b2 = b1; b1 = b0; b0 = x * b1 - b2 + array[i]; } return T{0.5} * (b0 - b2); } // See double and float instantiations below template T i1e(T _x) { } // Double specialization (uses different coefficients than the float version) template<> double i1e(double _x) { const double x = fabs(_x); if (x <= double{8.}) { // Chebyshev double coefficients for exp(-x) i1(x) in the interval [0,8]. // Note: lim(x->0){ exp(-x) i1(x) / x } = 1/2. static const double coefficients[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1}; const double y = x / double{2.} - double{2.}; const double out = chbevl(y, coefficients, int{29}) * x; return (_x < 0.) ? -out : out; } // Chebyshev coefficients for exp(-x) sqrt(x) i1(x) // in the inverted interval (8, infinity]. // Note: lim(x->inf){ exp(-x) sqrt(x) i1(x) } = 1/sqrt(2pi). // TODO: what's an "inverted interval"? Open on the left // and closed on the right? static const double coefficients[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1}; const double out = chbevl(double{32.} / x - double{2.}, coefficients, int{25}) / sqrt(x); return (_x < double{0.}) ? -out : out; } // Float specialization (uses different coefficients than the double version) template<> float i1e(float _x) { const float x = fabsf(_x); if (x <= float{8.}) { // Chebyshev double coefficients for exp(-x) i1(x) in the interval [0,8]. // Note: lim(x->0){ exp(-x) i1(x) / x } = 1/2. static const float coefficients[] = { 9.38153738649577178388E-9f, -4.44505912879632808065E-8f, 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, 2.52587186443633654823E-1f}; const float y = x / float{2.} - float{2.}; const float out = chbevl(y, coefficients, int{17}) * x; return (_x < 0.) ? -out : out; } // Chebyshev coefficients for exp(-x) sqrt(x) i1(x) // in the inverted interval (8, infinity]. // Note: lim(x->inf){ exp(-x) sqrt(x) i1(x) } = 1/sqrt(2pi). // TODO: what's an "inverted interval"? Open on the left // and closed on the right? static const float coefficients[] = { -3.83538038596423702205E-9f, -2.63146884688951950684E-8f, -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, 7.78576235018280120474E-1f}; const float out = chbevl(float{32.} / x - float{2.}, coefficients, int{7}) / sqrt(x); return (_x < float{0.}) ? -out : out; } ); // i1e_string const auto kaiser_window_string = i0_string + jiterator_stringify( template T kaiser_window(T a, T inv_alpha, T beta, T inv_i0_beta) { T x = a * inv_alpha - T{1}; T y = max(T{0}, T{1} - x * x); return i0(beta * sqrt(y)) * inv_i0_beta; } ); // kaiser_window_string const auto sinc_string = jiterator_stringify( template T sinc(T a) { if (a == T(0)) { return T(1); } else { constexpr T pi = T(3.14159265358979323846L); T product = pi * a; return std::sin(product) / product; } } ); // sinc_string const auto erfcx_string = jiterator_stringify( /* The next function is taken from http://ab-initio.mit.edu/Faddeev */ /* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* erfcx(x) = exp(x^2) erfc(x) function, for real x, written by Steven G. Johnson, October 2012. This function combines a few different ideas. First, for x > 50, it uses a continued-fraction expansion (same as for the Faddeeva function, but with algebraic simplifications for z=i*x). Second, for 0 <= x <= 50, it uses Chebyshev polynomial approximations, but with two twists: a) It maps x to y = 4 / (4+x) in [0,1]. This simple transformation, inspired by a similar transformation in the octave-forge/specfun erfcx by Soren Hauberg, results in much faster Chebyshev convergence than other simple transformations I have examined. b) Instead of using a single Chebyshev polynomial for the entire [0,1] y interval, we break the interval up into 100 equal subintervals, with a switch/lookup table, and use much lower degree Chebyshev polynomials in each subinterval. This greatly improves performance in my tests. For x < 0, we use the relationship erfcx(-x) = 2 exp(x^2) - erfc(x), with the usual checks for overflow etcetera. Performance-wise, it seems to be substantially faster than either the SLATEC DERFC function [or an erfcx function derived therefrom] or Cody's CALERF function (from netlib.org/specfun), while retaining near machine precision in accuracy. */ /* Given y100 = 100 * y, where y = 4 / (4 + x) for x >= 0, compute erfc(x). Uses a look-up table of 100 different Chebyshev polynomials for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated with the help of Maple and a little shell script. This allows the Chebyshev polynomials to be of significantly lower degree (about 1/4) compared to fitting the whole [0,1] interval with a single polynomial. */ // TODO: review if this is computing in double when given a float input template T erfcx_y100(T y100) { switch (static_cast(y100)) { case 0: { T t = 2*y100 - 1; return 0.70878032454106438663e-3 + (0.71234091047026302958e-3 + (0.35779077297597742384e-5 + (0.17403143962587937815e-7 + (0.81710660047307788845e-10 + (0.36885022360434957634e-12 + 0.15917038551111111111e-14 * t) * t) * t) * t) * t) * t; } case 1: { T t = 2*y100 - 3; return 0.21479143208285144230e-2 + (0.72686402367379996033e-3 + (0.36843175430938995552e-5 + (0.18071841272149201685e-7 + (0.85496449296040325555e-10 + (0.38852037518534291510e-12 + 0.16868473576888888889e-14 * t) * t) * t) * t) * t) * t; } case 2: { T t = 2*y100 - 5; return 0.36165255935630175090e-2 + (0.74182092323555510862e-3 + (0.37948319957528242260e-5 + (0.18771627021793087350e-7 + (0.89484715122415089123e-10 + (0.40935858517772440862e-12 + 0.17872061464888888889e-14 * t) * t) * t) * t) * t) * t; } case 3: { T t = 2*y100 - 7; return 0.51154983860031979264e-2 + (0.75722840734791660540e-3 + (0.39096425726735703941e-5 + (0.19504168704300468210e-7 + (0.93687503063178993915e-10 + (0.43143925959079664747e-12 + 0.18939926435555555556e-14 * t) * t) * t) * t) * t) * t; } case 4: { T t = 2*y100 - 9; return 0.66457513172673049824e-2 + (0.77310406054447454920e-3 + (0.40289510589399439385e-5 + (0.20271233238288381092e-7 + (0.98117631321709100264e-10 + (0.45484207406017752971e-12 + 0.20076352213333333333e-14 * t) * t) * t) * t) * t) * t; } case 5: { T t = 2*y100 - 11; return 0.82082389970241207883e-2 + (0.78946629611881710721e-3 + (0.41529701552622656574e-5 + (0.21074693344544655714e-7 + (0.10278874108587317989e-9 + (0.47965201390613339638e-12 + 0.21285907413333333333e-14 * t) * t) * t) * t) * t) * t; } case 6: { T t = 2*y100 - 13; return 0.98039537275352193165e-2 + (0.80633440108342840956e-3 + (0.42819241329736982942e-5 + (0.21916534346907168612e-7 + (0.10771535136565470914e-9 + (0.50595972623692822410e-12 + 0.22573462684444444444e-14 * t) * t) * t) * t) * t) * t; } case 7: { T t = 2*y100 - 15; return 0.11433927298290302370e-1 + (0.82372858383196561209e-3 + (0.44160495311765438816e-5 + (0.22798861426211986056e-7 + (0.11291291745879239736e-9 + (0.53386189365816880454e-12 + 0.23944209546666666667e-14 * t) * t) * t) * t) * t) * t; } case 8: { T t = 2*y100 - 17; return 0.13099232878814653979e-1 + (0.84167002467906968214e-3 + (0.45555958988457506002e-5 + (0.23723907357214175198e-7 + (0.11839789326602695603e-9 + (0.56346163067550237877e-12 + 0.25403679644444444444e-14 * t) * t) * t) * t) * t) * t; } case 9: { T t = 2*y100 - 19; return 0.14800987015587535621e-1 + (0.86018092946345943214e-3 + (0.47008265848816866105e-5 + (0.24694040760197315333e-7 + (0.12418779768752299093e-9 + (0.59486890370320261949e-12 + 0.26957764568888888889e-14 * t) * t) * t) * t) * t) * t; } case 10: { T t = 2*y100 - 21; return 0.16540351739394069380e-1 + (0.87928458641241463952e-3 + (0.48520195793001753903e-5 + (0.25711774900881709176e-7 + (0.13030128534230822419e-9 + (0.62820097586874779402e-12 + 0.28612737351111111111e-14 * t) * t) * t) * t) * t) * t; } case 11: { T t = 2*y100 - 23; return 0.18318536789842392647e-1 + (0.89900542647891721692e-3 + (0.50094684089553365810e-5 + (0.26779777074218070482e-7 + (0.13675822186304615566e-9 + (0.66358287745352705725e-12 + 0.30375273884444444444e-14 * t) * t) * t) * t) * t) * t; } case 12: { T t = 2*y100 - 25; return 0.20136801964214276775e-1 + (0.91936908737673676012e-3 + (0.51734830914104276820e-5 + (0.27900878609710432673e-7 + (0.14357976402809042257e-9 + (0.70114790311043728387e-12 + 0.32252476000000000000e-14 * t) * t) * t) * t) * t) * t; } case 13: { T t = 2*y100 - 27; return 0.21996459598282740954e-1 + (0.94040248155366777784e-3 + (0.53443911508041164739e-5 + (0.29078085538049374673e-7 + (0.15078844500329731137e-9 + (0.74103813647499204269e-12 + 0.34251892320000000000e-14 * t) * t) * t) * t) * t) * t; } case 14: { T t = 2*y100 - 29; return 0.23898877187226319502e-1 + (0.96213386835900177540e-3 + (0.55225386998049012752e-5 + (0.30314589961047687059e-7 + (0.15840826497296335264e-9 + (0.78340500472414454395e-12 + 0.36381553564444444445e-14 * t) * t) * t) * t) * t) * t; } case 15: { T t = 2*y100 - 31; return 0.25845480155298518485e-1 + (0.98459293067820123389e-3 + (0.57082915920051843672e-5 + (0.31613782169164830118e-7 + (0.16646478745529630813e-9 + (0.82840985928785407942e-12 + 0.38649975768888888890e-14 * t) * t) * t) * t) * t) * t; } case 16: { T t = 2*y100 - 33; return 0.27837754783474696598e-1 + (0.10078108563256892757e-2 + (0.59020366493792212221e-5 + (0.32979263553246520417e-7 + (0.17498524159268458073e-9 + (0.87622459124842525110e-12 + 0.41066206488888888890e-14 * t) * t) * t) * t) * t) * t; } case 17: { T t = 2*y100 - 35; return 0.29877251304899307550e-1 + (0.10318204245057349310e-2 + (0.61041829697162055093e-5 + (0.34414860359542720579e-7 + (0.18399863072934089607e-9 + (0.92703227366365046533e-12 + 0.43639844053333333334e-14 * t) * t) * t) * t) * t) * t; } case 18: { T t = 2*y100 - 37; return 0.31965587178596443475e-1 + (0.10566560976716574401e-2 + (0.63151633192414586770e-5 + (0.35924638339521924242e-7 + (0.19353584758781174038e-9 + (0.98102783859889264382e-12 + 0.46381060817777777779e-14 * t) * t) * t) * t) * t) * t; } case 19: { T t = 2*y100 - 39; return 0.34104450552588334840e-1 + (0.10823541191350532574e-2 + (0.65354356159553934436e-5 + (0.37512918348533521149e-7 + (0.20362979635817883229e-9 + (0.10384187833037282363e-11 + 0.49300625262222222221e-14 * t) * t) * t) * t) * t) * t; } case 20: { T t = 2*y100 - 41; return 0.36295603928292425716e-1 + (0.11089526167995268200e-2 + (0.67654845095518363577e-5 + (0.39184292949913591646e-7 + (0.21431552202133775150e-9 + (0.10994259106646731797e-11 + 0.52409949102222222221e-14 * t) * t) * t) * t) * t) * t; } case 21: { T t = 2*y100 - 43; return 0.38540888038840509795e-1 + (0.11364917134175420009e-2 + (0.70058230641246312003e-5 + (0.40943644083718586939e-7 + (0.22563034723692881631e-9 + (0.11642841011361992885e-11 + 0.55721092871111111110e-14 * t) * t) * t) * t) * t) * t; } case 22: { T t = 2*y100 - 45; return 0.40842225954785960651e-1 + (0.11650136437945673891e-2 + (0.72569945502343006619e-5 + (0.42796161861855042273e-7 + (0.23761401711005024162e-9 + (0.12332431172381557035e-11 + 0.59246802364444444445e-14 * t) * t) * t) * t) * t) * t; } case 23: { T t = 2*y100 - 47; return 0.43201627431540222422e-1 + (0.11945628793917272199e-2 + (0.75195743532849206263e-5 + (0.44747364553960993492e-7 + (0.25030885216472953674e-9 + (0.13065684400300476484e-11 + 0.63000532853333333334e-14 * t) * t) * t) * t) * t) * t; } case 24: { T t = 2*y100 - 49; return 0.45621193513810471438e-1 + (0.12251862608067529503e-2 + (0.77941720055551920319e-5 + (0.46803119830954460212e-7 + (0.26375990983978426273e-9 + (0.13845421370977119765e-11 + 0.66996477404444444445e-14 * t) * t) * t) * t) * t) * t; } case 25: { T t = 2*y100 - 51; return 0.48103121413299865517e-1 + (0.12569331386432195113e-2 + (0.80814333496367673980e-5 + (0.48969667335682018324e-7 + (0.27801515481905748484e-9 + (0.14674637611609884208e-11 + 0.71249589351111111110e-14 * t) * t) * t) * t) * t) * t; } case 26: { T t = 2*y100 - 53; return 0.50649709676983338501e-1 + (0.12898555233099055810e-2 + (0.83820428414568799654e-5 + (0.51253642652551838659e-7 + (0.29312563849675507232e-9 + (0.15556512782814827846e-11 + 0.75775607822222222221e-14 * t) * t) * t) * t) * t) * t; } case 27: { T t = 2*y100 - 55; return 0.53263363664388864181e-1 + (0.13240082443256975769e-2 + (0.86967260015007658418e-5 + (0.53662102750396795566e-7 + (0.30914568786634796807e-9 + (0.16494420240828493176e-11 + 0.80591079644444444445e-14 * t) * t) * t) * t) * t) * t; } case 28: { T t = 2*y100 - 57; return 0.55946601353500013794e-1 + (0.13594491197408190706e-2 + (0.90262520233016380987e-5 + (0.56202552975056695376e-7 + (0.32613310410503135996e-9 + (0.17491936862246367398e-11 + 0.85713381688888888890e-14 * t) * t) * t) * t) * t) * t; } case 29: { T t = 2*y100 - 59; return 0.58702059496154081813e-1 + (0.13962391363223647892e-2 + (0.93714365487312784270e-5 + (0.58882975670265286526e-7 + (0.34414937110591753387e-9 + (0.18552853109751857859e-11 + 0.91160736711111111110e-14 * t) * t) * t) * t) * t) * t; } case 30: { T t = 2*y100 - 61; return 0.61532500145144778048e-1 + (0.14344426411912015247e-2 + (0.97331446201016809696e-5 + (0.61711860507347175097e-7 + (0.36325987418295300221e-9 + (0.19681183310134518232e-11 + 0.96952238400000000000e-14 * t) * t) * t) * t) * t) * t; } case 31: { T t = 2*y100 - 63; return 0.64440817576653297993e-1 + (0.14741275456383131151e-2 + (0.10112293819576437838e-4 + (0.64698236605933246196e-7 + (0.38353412915303665586e-9 + (0.20881176114385120186e-11 + 0.10310784480000000000e-13 * t) * t) * t) * t) * t) * t; } case 32: { T t = 2*y100 - 65; return 0.67430045633130393282e-1 + (0.15153655418916540370e-2 + (0.10509857606888328667e-4 + (0.67851706529363332855e-7 + (0.40504602194811140006e-9 + (0.22157325110542534469e-11 + 0.10964842115555555556e-13 * t) * t) * t) * t) * t) * t; } case 33: { T t = 2*y100 - 67; return 0.70503365513338850709e-1 + (0.15582323336495709827e-2 + (0.10926868866865231089e-4 + (0.71182482239613507542e-7 + (0.42787405890153386710e-9 + (0.23514379522274416437e-11 + 0.11659571751111111111e-13 * t) * t) * t) * t) * t) * t; } case 34: { T t = 2*y100 - 69; return 0.73664114037944596353e-1 + (0.16028078812438820413e-2 + (0.11364423678778207991e-4 + (0.74701423097423182009e-7 + (0.45210162777476488324e-9 + (0.24957355004088569134e-11 + 0.12397238257777777778e-13 * t) * t) * t) * t) * t) * t; } case 35: { T t = 2*y100 - 71; return 0.76915792420819562379e-1 + (0.16491766623447889354e-2 + (0.11823685320041302169e-4 + (0.78420075993781544386e-7 + (0.47781726956916478925e-9 + (0.26491544403815724749e-11 + 0.13180196462222222222e-13 * t) * t) * t) * t) * t) * t; } case 36: { T t = 2*y100 - 73; return 0.80262075578094612819e-1 + (0.16974279491709504117e-2 + (0.12305888517309891674e-4 + (0.82350717698979042290e-7 + (0.50511496109857113929e-9 + (0.28122528497626897696e-11 + 0.14010889635555555556e-13 * t) * t) * t) * t) * t) * t; } case 37: { T t = 2*y100 - 75; return 0.83706822008980357446e-1 + (0.17476561032212656962e-2 + (0.12812343958540763368e-4 + (0.86506399515036435592e-7 + (0.53409440823869467453e-9 + (0.29856186620887555043e-11 + 0.14891851591111111111e-13 * t) * t) * t) * t) * t) * t; } case 38: { T t = 2*y100 - 77; return 0.87254084284461718231e-1 + (0.17999608886001962327e-2 + (0.13344443080089492218e-4 + (0.90900994316429008631e-7 + (0.56486134972616465316e-9 + (0.31698707080033956934e-11 + 0.15825697795555555556e-13 * t) * t) * t) * t) * t) * t; } case 39: { T t = 2*y100 - 79; return 0.90908120182172748487e-1 + (0.18544478050657699758e-2 + (0.13903663143426120077e-4 + (0.95549246062549906177e-7 + (0.59752787125242054315e-9 + (0.33656597366099099413e-11 + 0.16815130613333333333e-13 * t) * t) * t) * t) * t) * t; } case 40: { T t = 2*y100 - 81; return 0.94673404508075481121e-1 + (0.19112284419887303347e-2 + (0.14491572616545004930e-4 + (0.10046682186333613697e-6 + (0.63221272959791000515e-9 + (0.35736693975589130818e-11 + 0.17862931591111111111e-13 * t) * t) * t) * t) * t) * t; } case 41: { T t = 2*y100 - 83; return 0.98554641648004456555e-1 + (0.19704208544725622126e-2 + (0.15109836875625443935e-4 + (0.10567036667675984067e-6 + (0.66904168640019354565e-9 + (0.37946171850824333014e-11 + 0.18971959040000000000e-13 * t) * t) * t) * t) * t) * t; } case 42: { T t = 2*y100 - 85; return 0.10255677889470089531e0 + (0.20321499629472857418e-2 + (0.15760224242962179564e-4 + (0.11117756071353507391e-6 + (0.70814785110097658502e-9 + (0.40292553276632563925e-11 + 0.20145143075555555556e-13 * t) * t) * t) * t) * t) * t; } case 43: { T t = 2*y100 - 87; return 0.10668502059865093318e0 + (0.20965479776148731610e-2 + (0.16444612377624983565e-4 + (0.11700717962026152749e-6 + (0.74967203250938418991e-9 + (0.42783716186085922176e-11 + 0.21385479360000000000e-13 * t) * t) * t) * t) * t) * t; } case 44: { T t = 2*y100 - 89; return 0.11094484319386444474e0 + (0.21637548491908170841e-2 + (0.17164995035719657111e-4 + (0.12317915750735938089e-6 + (0.79376309831499633734e-9 + (0.45427901763106353914e-11 + 0.22696025653333333333e-13 * t) * t) * t) * t) * t) * t; } case 45: { T t = 2*y100 - 91; return 0.11534201115268804714e0 + (0.22339187474546420375e-2 + (0.17923489217504226813e-4 + (0.12971465288245997681e-6 + (0.84057834180389073587e-9 + (0.48233721206418027227e-11 + 0.24079890062222222222e-13 * t) * t) * t) * t) * t) * t; } case 46: { T t = 2*y100 - 93; return 0.11988259392684094740e0 + (0.23071965691918689601e-2 + (0.18722342718958935446e-4 + (0.13663611754337957520e-6 + (0.89028385488493287005e-9 + (0.51210161569225846701e-11 + 0.25540227111111111111e-13 * t) * t) * t) * t) * t) * t; } case 47: { T t = 2*y100 - 95; return 0.12457298393509812907e0 + (0.23837544771809575380e-2 + (0.19563942105711612475e-4 + (0.14396736847739470782e-6 + (0.94305490646459247016e-9 + (0.54366590583134218096e-11 + 0.27080225920000000000e-13 * t) * t) * t) * t) * t) * t; } case 48: { T t = 2*y100 - 97; return 0.12941991566142438816e0 + (0.24637684719508859484e-2 + (0.20450821127475879816e-4 + (0.15173366280523906622e-6 + (0.99907632506389027739e-9 + (0.57712760311351625221e-11 + 0.28703099555555555556e-13 * t) * t) * t) * t) * t) * t; } case 49: { T t = 2*y100 - 99; return 0.13443048593088696613e0 + (0.25474249981080823877e-2 + (0.21385669591362915223e-4 + (0.15996177579900443030e-6 + (0.10585428844575134013e-8 + (0.61258809536787882989e-11 + 0.30412080142222222222e-13 * t) * t) * t) * t) * t) * t; } case 50: { T t = 2*y100 - 101; return 0.13961217543434561353e0 + (0.26349215871051761416e-2 + (0.22371342712572567744e-4 + (0.16868008199296822247e-6 + (0.11216596910444996246e-8 + (0.65015264753090890662e-11 + 0.32210394506666666666e-13 * t) * t) * t) * t) * t) * t; } case 51: { T t = 2*y100 - 103; return 0.14497287157673800690e0 + (0.27264675383982439814e-2 + (0.23410870961050950197e-4 + (0.17791863939526376477e-6 + (0.11886425714330958106e-8 + (0.68993039665054288034e-11 + 0.34101266222222222221e-13 * t) * t) * t) * t) * t) * t; } case 52: { T t = 2*y100 - 105; return 0.15052089272774618151e0 + (0.28222846410136238008e-2 + (0.24507470422713397006e-4 + (0.18770927679626136909e-6 + (0.12597184587583370712e-8 + (0.73203433049229821618e-11 + 0.36087889048888888890e-13 * t) * t) * t) * t) * t) * t; } case 53: { T t = 2*y100 - 107; return 0.15626501395774612325e0 + (0.29226079376196624949e-2 + (0.25664553693768450545e-4 + (0.19808568415654461964e-6 + (0.13351257759815557897e-8 + (0.77658124891046760667e-11 + 0.38173420035555555555e-13 * t) * t) * t) * t) * t) * t; } case 54: { T t = 2*y100 - 109; return 0.16221449434620737567e0 + (0.30276865332726475672e-2 + (0.26885741326534564336e-4 + (0.20908350604346384143e-6 + (0.14151148144240728728e-8 + (0.82369170665974313027e-11 + 0.40360957457777777779e-13 * t) * t) * t) * t) * t) * t; } case 55: { T t = 2*y100 - 111; return 0.16837910595412130659e0 + (0.31377844510793082301e-2 + (0.28174873844911175026e-4 + (0.22074043807045782387e-6 + (0.14999481055996090039e-8 + (0.87348993661930809254e-11 + 0.42653528977777777779e-13 * t) * t) * t) * t) * t) * t; } case 56: { T t = 2*y100 - 113; return 0.17476916455659369953e0 + (0.32531815370903068316e-2 + (0.29536024347344364074e-4 + (0.23309632627767074202e-6 + (0.15899007843582444846e-8 + (0.92610375235427359475e-11 + 0.45054073102222222221e-13 * t) * t) * t) * t) * t) * t; } case 57: { T t = 2*y100 - 115; return 0.18139556223643701364e0 + (0.33741744168096996041e-2 + (0.30973511714709500836e-4 + (0.24619326937592290996e-6 + (0.16852609412267750744e-8 + (0.98166442942854895573e-11 + 0.47565418097777777779e-13 * t) * t) * t) * t) * t) * t; } case 58: { T t = 2*y100 - 117; return 0.18826980194443664549e0 + (0.35010775057740317997e-2 + (0.32491914440014267480e-4 + (0.26007572375886319028e-6 + (0.17863299617388376116e-8 + (0.10403065638343878679e-10 + 0.50190265831111111110e-13 * t) * t) * t) * t) * t) * t; } case 59: { T t = 2*y100 - 119; return 0.19540403413693967350e0 + (0.36342240767211326315e-2 + (0.34096085096200907289e-4 + (0.27479061117017637474e-6 + (0.18934228504790032826e-8 + (0.11021679075323598664e-10 + 0.52931171733333333334e-13 * t) * t) * t) * t) * t) * t; } case 60: { T t = 2*y100 - 121; return 0.20281109560651886959e0 + (0.37739673859323597060e-2 + (0.35791165457592409054e-4 + (0.29038742889416172404e-6 + (0.20068685374849001770e-8 + (0.11673891799578381999e-10 + 0.55790523093333333334e-13 * t) * t) * t) * t) * t) * t; } case 61: { T t = 2*y100 - 123; return 0.21050455062669334978e0 + (0.39206818613925652425e-2 + (0.37582602289680101704e-4 + (0.30691836231886877385e-6 + (0.21270101645763677824e-8 + (0.12361138551062899455e-10 + 0.58770520160000000000e-13 * t) * t) * t) * t) * t) * t; } case 62: { T t = 2*y100 - 125; return 0.21849873453703332479e0 + (0.40747643554689586041e-2 + (0.39476163820986711501e-4 + (0.32443839970139918836e-6 + (0.22542053491518680200e-8 + (0.13084879235290858490e-10 + 0.61873153262222222221e-13 * t) * t) * t) * t) * t) * t; } case 63: { T t = 2*y100 - 127; return 0.22680879990043229327e0 + (0.42366354648628516935e-2 + (0.41477956909656896779e-4 + (0.34300544894502810002e-6 + (0.23888264229264067658e-8 + (0.13846596292818514601e-10 + 0.65100183751111111110e-13 * t) * t) * t) * t) * t) * t; } case 64: { T t = 2*y100 - 129; return 0.23545076536988703937e0 + (0.44067409206365170888e-2 + (0.43594444916224700881e-4 + (0.36268045617760415178e-6 + (0.25312606430853202748e-8 + (0.14647791812837903061e-10 + 0.68453122631111111110e-13 * t) * t) * t) * t) * t) * t; } case 65: { T t = 2*y100 - 131; return 0.24444156740777432838e0 + (0.45855530511605787178e-2 + (0.45832466292683085475e-4 + (0.38352752590033030472e-6 + (0.26819103733055603460e-8 + (0.15489984390884756993e-10 + 0.71933206364444444445e-13 * t) * t) * t) * t) * t) * t; } case 66: { T t = 2*y100 - 133; return 0.25379911500634264643e0 + (0.47735723208650032167e-2 + (0.48199253896534185372e-4 + (0.40561404245564732314e-6 + (0.28411932320871165585e-8 + (0.16374705736458320149e-10 + 0.75541379822222222221e-13 * t) * t) * t) * t) * t) * t; } case 67: { T t = 2*y100 - 135; return 0.26354234756393613032e0 + (0.49713289477083781266e-2 + (0.50702455036930367504e-4 + (0.42901079254268185722e-6 + (0.30095422058900481753e-8 + (0.17303497025347342498e-10 + 0.79278273368888888890e-13 * t) * t) * t) * t) * t) * t; } case 68: { T t = 2*y100 - 137; return 0.27369129607732343398e0 + (0.51793846023052643767e-2 + (0.53350152258326602629e-4 + (0.45379208848865015485e-6 + (0.31874057245814381257e-8 + (0.18277905010245111046e-10 + 0.83144182364444444445e-13 * t) * t) * t) * t) * t) * t; } case 69: { T t = 2*y100 - 139; return 0.28426714781640316172e0 + (0.53983341916695141966e-2 + (0.56150884865255810638e-4 + (0.48003589196494734238e-6 + (0.33752476967570796349e-8 + (0.19299477888083469086e-10 + 0.87139049137777777779e-13 * t) * t) * t) * t) * t) * t; } case 70: { T t = 2*y100 - 141; return 0.29529231465348519920e0 + (0.56288077305420795663e-2 + (0.59113671189913307427e-4 + (0.50782393781744840482e-6 + (0.35735475025851713168e-8 + (0.20369760937017070382e-10 + 0.91262442613333333334e-13 * t) * t) * t) * t) * t) * t; } case 71: { T t = 2*y100 - 143; return 0.30679050522528838613e0 + (0.58714723032745403331e-2 + (0.62248031602197686791e-4 + (0.53724185766200945789e-6 + (0.37827999418960232678e-8 + (0.21490291930444538307e-10 + 0.95513539182222222221e-13 * t) * t) * t) * t) * t) * t; } case 72: { T t = 2*y100 - 145; return 0.31878680111173319425e0 + (0.61270341192339103514e-2 + (0.65564012259707640976e-4 + (0.56837930287837738996e-6 + (0.40035151353392378882e-8 + (0.22662596341239294792e-10 + 0.99891109760000000000e-13 * t) * t) * t) * t) * t) * t; } case 73: { T t = 2*y100 - 147; return 0.33130773722152622027e0 + (0.63962406646798080903e-2 + (0.69072209592942396666e-4 + (0.60133006661885941812e-6 + (0.42362183765883466691e-8 + (0.23888182347073698382e-10 + 0.10439349811555555556e-12 * t) * t) * t) * t) * t) * t; } case 74: { T t = 2*y100 - 149; return 0.34438138658041336523e0 + (0.66798829540414007258e-2 + (0.72783795518603561144e-4 + (0.63619220443228800680e-6 + (0.44814499336514453364e-8 + (0.25168535651285475274e-10 + 0.10901861383111111111e-12 * t) * t) * t) * t) * t) * t; } case 75: { T t = 2*y100 - 151; return 0.35803744972380175583e0 + (0.69787978834882685031e-2 + (0.76710543371454822497e-4 + (0.67306815308917386747e-6 + (0.47397647975845228205e-8 + (0.26505114141143050509e-10 + 0.11376390933333333333e-12 * t) * t) * t) * t) * t) * t; } case 76: { T t = 2*y100 - 153; return 0.37230734890119724188e0 + (0.72938706896461381003e-2 + (0.80864854542670714092e-4 + (0.71206484718062688779e-6 + (0.50117323769745883805e-8 + (0.27899342394100074165e-10 + 0.11862637614222222222e-12 * t) * t) * t) * t) * t) * t; } case 77: { T t = 2*y100 - 155; return 0.38722432730555448223e0 + (0.76260375162549802745e-2 + (0.85259785810004603848e-4 + (0.75329383305171327677e-6 + (0.52979361368388119355e-8 + (0.29352606054164086709e-10 + 0.12360253370666666667e-12 * t) * t) * t) * t) * t) * t; } case 78: { T t = 2*y100 - 157; return 0.40282355354616940667e0 + (0.79762880915029728079e-2 + (0.89909077342438246452e-4 + (0.79687137961956194579e-6 + (0.55989731807360403195e-8 + (0.30866246101464869050e-10 + 0.12868841946666666667e-12 * t) * t) * t) * t) * t) * t; } case 79: { T t = 2*y100 - 159; return 0.41914223158913787649e0 + (0.83456685186950463538e-2 + (0.94827181359250161335e-4 + (0.84291858561783141014e-6 + (0.59154537751083485684e-8 + (0.32441553034347469291e-10 + 0.13387957943111111111e-12 * t) * t) * t) * t) * t) * t; } case 80: { T t = 2*y100 - 161; return 0.43621971639463786896e0 + (0.87352841828289495773e-2 + (0.10002929142066799966e-3 + (0.89156148280219880024e-6 + (0.62480008150788597147e-8 + (0.34079760983458878910e-10 + 0.13917107176888888889e-12 * t) * t) * t) * t) * t) * t; } case 81: { T t = 2*y100 - 163; return 0.45409763548534330981e0 + (0.91463027755548240654e-2 + (0.10553137232446167258e-3 + (0.94293113464638623798e-6 + (0.65972492312219959885e-8 + (0.35782041795476563662e-10 + 0.14455745872000000000e-12 * t) * t) * t) * t) * t) * t; } case 82: { T t = 2*y100 - 165; return 0.47282001668512331468e0 + (0.95799574408860463394e-2 + (0.11135019058000067469e-3 + (0.99716373005509038080e-6 + (0.69638453369956970347e-8 + (0.37549499088161345850e-10 + 0.15003280712888888889e-12 * t) * t) * t) * t) * t) * t; } case 83: { T t = 2*y100 - 167; return 0.49243342227179841649e0 + (0.10037550043909497071e-1 + (0.11750334542845234952e-3 + (0.10544006716188967172e-5 + (0.73484461168242224872e-8 + (0.39383162326435752965e-10 + 0.15559069118222222222e-12 * t) * t) * t) * t) * t) * t; } case 84: { T t = 2*y100 - 169; return 0.51298708979209258326e0 + (0.10520454564612427224e-1 + (0.12400930037494996655e-3 + (0.11147886579371265246e-5 + (0.77517184550568711454e-8 + (0.41283980931872622611e-10 + 0.16122419680000000000e-12 * t) * t) * t) * t) * t) * t; } case 85: { T t = 2*y100 - 171; return 0.53453307979101369843e0 + (0.11030120618800726938e-1 + (0.13088741519572269581e-3 + (0.11784797595374515432e-5 + (0.81743383063044825400e-8 + (0.43252818449517081051e-10 + 0.16692592640000000000e-12 * t) * t) * t) * t) * t) * t; } case 86: { T t = 2*y100 - 173; return 0.55712643071169299478e0 + (0.11568077107929735233e-1 + (0.13815797838036651289e-3 + (0.12456314879260904558e-5 + (0.86169898078969313597e-8 + (0.45290446811539652525e-10 + 0.17268801084444444444e-12 * t) * t) * t) * t) * t) * t; } case 87: { T t = 2*y100 - 175; return 0.58082532122519320968e0 + (0.12135935999503877077e-1 + (0.14584223996665838559e-3 + (0.13164068573095710742e-5 + (0.90803643355106020163e-8 + (0.47397540713124619155e-10 + 0.17850211608888888889e-12 * t) * t) * t) * t) * t) * t; } case 88: { T t = 2*y100 - 177; return 0.60569124025293375554e0 + (0.12735396239525550361e-1 + (0.15396244472258863344e-3 + (0.13909744385382818253e-5 + (0.95651595032306228245e-8 + (0.49574672127669041550e-10 + 0.18435945564444444444e-12 * t) * t) * t) * t) * t) * t; } case 89: { T t = 2*y100 - 179; return 0.63178916494715716894e0 + (0.13368247798287030927e-1 + (0.16254186562762076141e-3 + (0.14695084048334056083e-5 + (0.10072078109604152350e-7 + (0.51822304995680707483e-10 + 0.19025081422222222222e-12 * t) * t) * t) * t) * t) * t; } case 90: { T t = 2*y100 - 181; return 0.65918774689725319200e0 + (0.14036375850601992063e-1 + (0.17160483760259706354e-3 + (0.15521885688723188371e-5 + (0.10601827031535280590e-7 + (0.54140790105837520499e-10 + 0.19616655146666666667e-12 * t) * t) * t) * t) * t) * t; } case 91: { T t = 2*y100 - 183; return 0.68795950683174433822e0 + (0.14741765091365869084e-1 + (0.18117679143520433835e-3 + (0.16392004108230585213e-5 + (0.11155116068018043001e-7 + (0.56530360194925690374e-10 + 0.20209663662222222222e-12 * t) * t) * t) * t) * t) * t; } case 92: { T t = 2*y100 - 185; return 0.71818103808729967036e0 + (0.15486504187117112279e-1 + (0.19128428784550923217e-3 + (0.17307350969359975848e-5 + (0.11732656736113607751e-7 + (0.58991125287563833603e-10 + 0.20803065333333333333e-12 * t) * t) * t) * t) * t) * t; } case 93: { T t = 2*y100 - 187; return 0.74993321911726254661e0 + (0.16272790364044783382e-1 + (0.20195505163377912645e-3 + (0.18269894883203346953e-5 + (0.12335161021630225535e-7 + (0.61523068312169087227e-10 + 0.21395783431111111111e-12 * t) * t) * t) * t) * t) * t; } case 94: { T t = 2*y100 - 189; return 0.78330143531283492729e0 + (0.17102934132652429240e-1 + (0.21321800585063327041e-3 + (0.19281661395543913713e-5 + (0.12963340087354341574e-7 + (0.64126040998066348872e-10 + 0.21986708942222222222e-12 * t) * t) * t) * t) * t) * t; } case 95: { T t = 2*y100 - 191; return 0.81837581041023811832e0 + (0.17979364149044223802e-1 + (0.22510330592753129006e-3 + (0.20344732868018175389e-5 + (0.13617902941839949718e-7 + (0.66799760083972474642e-10 + 0.22574701262222222222e-12 * t) * t) * t) * t) * t) * t; } case 96: { T t = 2*y100 - 193; return 0.85525144775685126237e0 + (0.18904632212547561026e-1 + (0.23764237370371255638e-3 + (0.21461248251306387979e-5 + (0.14299555071870523786e-7 + (0.69543803864694171934e-10 + 0.23158593688888888889e-12 * t) * t) * t) * t) * t) * t; } case 97: { T t = 2*y100 - 195; return 0.89402868170849933734e0 + (0.19881418399127202569e-1 + (0.25086793128395995798e-3 + (0.22633402747585233180e-5 + (0.15008997042116532283e-7 + (0.72357609075043941261e-10 + 0.23737194737777777778e-12 * t) * t) * t) * t) * t) * t; } case 98: { T t = 2*y100 - 197; return 0.93481333942870796363e0 + (0.20912536329780368893e-1 + (0.26481403465998477969e-3 + (0.23863447359754921676e-5 + (0.15746923065472184451e-7 + (0.75240468141720143653e-10 + 0.24309291271111111111e-12 * t) * t) * t) * t) * t) * t; } case 99: { T t = 2*y100 - 199; return 0.97771701335885035464e0 + (0.22000938572830479551e-1 + (0.27951610702682383001e-3 + (0.25153688325245314530e-5 + (0.16514019547822821453e-7 + (0.78191526829368231251e-10 + 0.24873652355555555556e-12 * t) * t) * t) * t) * t) * t; } } // we only get here if y = 1, i.e. |x| < 4*eps, in which case // erfcx is within 1e-15 of 1.. return 1.; } template T erfcx(T x) { // Short-circuits on NaN (returning NaN) if (x != x) { return x; } if (x >= 0) { if (x > T{50}) { // continued-fraction expansion is faster const T ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi) if (x > T{5e7}) { // 1-term expansion, important to avoid overflow return ispi / x; } /* 5-term expansion (rely on compiler for CSE), simplified from: ispi / (x+0.5/(x+1/(x+1.5/(x+2/x)))) */ return ispi * ((x*x) * (x*x+T{4.5}) + T{2}) / (x * ((x*x) * (x*x+T{5}) + T{3.75})); } // x >= 0 x <= 50 return erfcx_y100(T{400} / (T{4} + x)); } // x < 0 if (x < T{-26.7}) { return POS_INFINITY; } else if (x < T{-6.1}) { return T{2} * exp(x * x); } // x < 0 and x >= -6.1 return T{2} * exp(x * x) - erfcx_y100(T{400} / (T{4} - x)); } ); // erfcx_string const auto airy_ai_string = jiterator_stringify( template T airy_ai_forward(T x) { static const T AN[] = { +3.46538101525629032477e-01, +1.20075952739645805542e+01, +7.62796053615234516538e+01, +1.68089224934630576269e+02, +1.59756391350164413639e+02, +7.05360906840444183113e+01, +1.40264691163389668864e+01, +9.99999999999999995305e-01, }; static const T AD[] = { +5.67594532638770212846e-01, +1.47562562584847203173e+01, +8.45138970141474626562e+01, +1.77318088145400459522e+02, +1.64234692871529701831e+02, +7.14778400825575695274e+01, +1.40959135607834029598e+01, +1.00000000000000000470e+00, }; static const T AFN[] = { -1.31696323418331795333e-01, -6.26456544431912369773e-01, -6.93158036036933542233e-01, -2.79779981545119124951e-01, -4.91900132609500318020e-02, -4.06265923594885404393e-03, -1.59276496239262096340e-04, -2.77649108155232920844e-06, -1.67787698489114633780e-08, }; static const T AFD[] = { +1.33560420706553243746e+01, +3.26825032795224613948e+01, +2.67367040941499554804e+01, +9.18707402907259625840e+00, +1.47529146771666414581e+00, +1.15687173795188044134e-01, +4.40291641615211203805e-03, +7.54720348287414296618e-05, +4.51850092970580378464e-07, }; static const T AGN[] = { +1.97339932091685679179e-02, +3.91103029615688277255e-01, +1.06579897599595591108e+00, +9.39169229816650230044e-01, +3.51465656105547619242e-01, +6.33888919628925490927e-02, +5.85804113048388458567e-03, +2.82851600836737019778e-04, +6.98793669997260967291e-06, +8.11789239554389293311e-08, +3.41551784765923618484e-10, }; static const T AGD[] = { +9.30892908077441974853e+00, +1.98352928718312140417e+01, +1.55646628932864612953e+01, +5.47686069422975497931e+00, +9.54293611618961883998e-01, +8.64580826352392193095e-02, +4.12656523824222607191e-03, +1.01259085116509135510e-04, +1.17166733214413521882e-06, +4.91834570062930015649e-09, }; int domain_flag = 0; T ai; if (isinf(x)) { return NAN; } if (x > T(103.892)) { return T(0.0); } T f; T g; T k; if (x < T(-2.09)) { T z = T(1.0) / (T(-2.0) * x * sqrt(-x) / T(3.0)); T afn = 0.0; for (uint8_t index = 0; index <= 8; index++) { afn = afn * (z * z) + AFN[index]; } T afd = 0.0; for (uint8_t index = 0; index <= 8; index++) { afd = afd * (z * z) + AFD[index]; } T agn = 0.0; for (uint8_t index = 0; index <= 10 + 0; index++) { agn = agn * (z * z) + AGN[index]; } T agd = 0.0; for (uint8_t index = 0; index <= 10 - 1; index++) { agd = agd * (z * z) + AGD[index]; } T t = T(-2.0) * x * sqrt(-x) / T(3.0) + T(0.25) * T(3.14159265358979323846); return T(5.64189583547756286948e-01) / sqrt(sqrt(-x)) * (sin(t) * (T(1.0) + z * z * afn / afd) - cos(t) * (z * agn / agd)); } if (x >= T(2.09)) { domain_flag = 5; T zeta = T(2.0) * x * sqrt(x) / T(3.0); T an = 0.0; for (uint8_t index = 0; index <= 7; index++) { an = an * (T(1.0) / zeta) + AN[index]; } T ad = 0.0; for (uint8_t index = 0; index <= 7; index++) { ad = ad * (T(1.0) / zeta) + AD[index]; } ai = T(5.64189583547756286948e-01) * (an / ad) / (T(2.0) * sqrt(sqrt(x)) * exp(zeta)); if (x > T(8.3203353)) { return ai; } } f = 1.0; g = x; k = 1.0; T m = 1.0; T n = x; T t = 1.0; T z = x * x * x; while (t > T(1.11022302462515654042e-16)) { m *= z; k += T(1.0); m /= k; n *= z; k += T(1.0); n /= k; m /= k; f += m; k += T(1.0); n /= k; g += n; t = abs(m / f); } if ((domain_flag & 1) == 0) { return T(0.355028053887817239260) * f - T(0.258819403792806798405) * g; } return ai; } // T airy_ai(T x) ); // airy_ai_string const auto bessel_j0_string = jiterator_stringify( template T bessel_j0_forward(T x) { static const T PP[] = { +7.96936729297347051624e-04, +8.28352392107440799803e-02, +1.23953371646414299388e+00, +5.44725003058768775090e+00, +8.74716500199817011941e+00, +5.30324038235394892183e+00, +9.99999999999999997821e-01, }; static const T PQ[] = { +9.24408810558863637013e-04, +8.56288474354474431428e-02, +1.25352743901058953537e+00, +5.47097740330417105182e+00, +8.76190883237069594232e+00, +5.30605288235394617618e+00, +1.00000000000000000218e+00, }; static const T QP[] = { -1.13663838898469149931e-02, -1.28252718670509318512e+00, -1.95539544257735972385e+01, -9.32060152123768231369e+01, -1.77681167980488050595e+02, -1.47077505154951170175e+02, -5.14105326766599330220e+01, -6.05014350600728481186e+00, }; static const T QQ[] = { +6.43178256118178023184e+01, +8.56430025976980587198e+02, +3.88240183605401609683e+03, +7.24046774195652478189e+03, +5.93072701187316984827e+03, +2.06209331660327847417e+03, +2.42005740240291393179e+02, }; static const T RP[] = { -4.79443220978201773821e+09, +1.95617491946556577543e+12, -2.49248344360967716204e+14, +9.70862251047306323952e+15, }; static const T RQ[] = { +4.99563147152651017219e+02, +1.73785401676374683123e+05, +4.84409658339962045305e+07, +1.11855537045356834862e+10, +2.11277520115489217587e+12, +3.10518229857422583814e+14, +3.18121955943204943306e+16, +1.71086294081043136091e+18, }; if (x < T(0)) { x = -x; } if (x <= T(5.0)) { if (x < T(0.00001)) { return T(1.0) - x * x / T(4.0); } T rp = 0.0; for (uint8_t index = 0; index <= 3; index++) { rp = rp * (x * x) + RP[index]; } T rq = 0.0; for (uint8_t index = 0; index <= 7; index++) { rq = rq * (x * x) + RQ[index]; } return (x * x - T(5.78318596294678452118e+00)) * (x * x - T(3.04712623436620863991e+01)) * rp / rq; } T pp = 0.0; for (uint8_t index = 0; index <= 6; index++) { pp = pp * (T(25.0) / (x * x)) + PP[index]; } T pq = 0.0; for (uint8_t index = 0; index <= 6; index++) { pq = pq * (T(25.0) / (x * x)) + PQ[index]; } T qp = 0.0; for (uint8_t index = 0; index <= 7; index++) { qp = qp * (T(25.0) / (x * x)) + QP[index]; } T qq = 0.0; for (uint8_t index = 0; index <= 6; index++) { qq = qq * (T(25.0) / (x * x)) + QQ[index]; } return (pp / pq * cos(x - T(0.785398163397448309615660845819875721)) - T(5.0) / x * (qp / qq) * sin(x - T(0.785398163397448309615660845819875721))) * T(0.797884560802865355879892119868763737) / sqrt(x); } // bessel_j0_forward(T x) ); // bessel_j0_string const auto bessel_y0_string = bessel_j0_string + jiterator_stringify( template T bessel_y0_forward(T x) { static const T PP[] = { +7.96936729297347051624e-04, +8.28352392107440799803e-02, +1.23953371646414299388e+00, +5.44725003058768775090e+00, +8.74716500199817011941e+00, +5.30324038235394892183e+00, +9.99999999999999997821e-01, }; static const T PQ[] = { +9.24408810558863637013e-04, +8.56288474354474431428e-02, +1.25352743901058953537e+00, +5.47097740330417105182e+00, +8.76190883237069594232e+00, +5.30605288235394617618e+00, +1.00000000000000000218e+00, }; static const T QP[] = { -1.13663838898469149931e-02, -1.28252718670509318512e+00, -1.95539544257735972385e+01, -9.32060152123768231369e+01, -1.77681167980488050595e+02, -1.47077505154951170175e+02, -5.14105326766599330220e+01, -6.05014350600728481186e+00, }; static const T QQ[] = { +6.43178256118178023184e+01, +8.56430025976980587198e+02, +3.88240183605401609683e+03, +7.24046774195652478189e+03, +5.93072701187316984827e+03, +2.06209331660327847417e+03, +2.42005740240291393179e+02, }; static const T YP[] = { +1.55924367855235737965e+04, -1.46639295903971606143e+07, +5.43526477051876500413e+09, -9.82136065717911466409e+11, +8.75906394395366999549e+13, -3.46628303384729719441e+15, +4.42733268572569800351e+16, -1.84950800436986690637e+16, }; static const T YQ[] = { +1.04128353664259848412e+03, +6.26107330137134956842e+05, +2.68919633393814121987e+08, +8.64002487103935000337e+10, +2.02979612750105546709e+13, +3.17157752842975028269e+15, +2.50596256172653059228e+17, }; if (x <= T(5.0)) { if (x == T(0.0)) { return NEG_INFINITY; } if (x < T(0.0)) { NAN; } T yp = 0.0; for (uint8_t index = 0; index <= 7; index++) { yp = yp * (x * x) + YP[index]; } T yq = 0.0; for (uint8_t index = 0; index <= 6; index++) { yq = yq * (x * x) + YQ[index]; } return yp / yq + (T(0.636619772367581343075535053490057448) * log(x) * bessel_j0_forward(x)); } T pp = 0.0; for (uint8_t index = 0; index <= 6; index++) { pp = pp * (T(25.0) / (x * x)) + PP[index]; } T pq = 0.0; for (uint8_t index = 0; index <= 6; index++) { pq = pq * (T(25.0) / (x * x)) + PQ[index]; } T qp = 0.0; for (uint8_t index = 0; index <= 7; index++) { qp = qp * (T(25.0) / (x * x)) + QP[index]; } T qq = 0.0; for (uint8_t index = 0; index <= 6; index++) { qq = qq * (T(25.0) / (x * x)) + QQ[index]; } return (pp / pq * sin(x - T(0.785398163397448309615660845819875721)) + T(5.0) / x * (qp / qq) * cos(x - T(0.785398163397448309615660845819875721))) * T(0.797884560802865355879892119868763737) / sqrt(x); } // bessel_y0_forward(T x) ); // bessel_y0_string const auto bessel_j1_string = jiterator_stringify( template T bessel_j1_forward(T x) { static const T PP[] = { +7.62125616208173112003e-04, +7.31397056940917570436e-02, +1.12719608129684925192e+00, +5.11207951146807644818e+00, +8.42404590141772420927e+00, +5.21451598682361504063e+00, +1.00000000000000000254e+00, }; static const T PQ[] = { +5.71323128072548699714e-04, +6.88455908754495404082e-02, +1.10514232634061696926e+00, +5.07386386128601488557e+00, +8.39985554327604159757e+00, +5.20982848682361821619e+00, +9.99999999999999997461e-01, }; static const T QP[] = { +5.10862594750176621635e-02, +4.98213872951233449420e+00, +7.58238284132545283818e+01, +3.66779609360150777800e+02, +7.10856304998926107277e+02, +5.97489612400613639965e+02, +2.11688757100572135698e+02, +2.52070205858023719784e+01, }; static const T QQ[] = { +7.42373277035675149943e+01, +1.05644886038262816351e+03, +4.98641058337653607651e+03, +9.56231892404756170795e+03, +7.99704160447350683650e+03, +2.82619278517639096600e+03, +3.36093607810698293419e+02, }; static const T RP[] = { -8.99971225705559398224e+08, +4.52228297998194034323e+11, -7.27494245221818276015e+13, +3.68295732863852883286e+15, }; static const T RQ[] = { +6.20836478118054335476e+02, +2.56987256757748830383e+05, +8.35146791431949253037e+07, +2.21511595479792499675e+10, +4.74914122079991414898e+12, +7.84369607876235854894e+14, +8.95222336184627338078e+16, +5.32278620332680085395e+18, }; if (x < T(0.0)) { return -bessel_j1_forward(-x); } if (x <= T(5.0)) { T rp = 0.0; for (uint8_t index = 0; index <= 3; index++) { rp = rp * (x * x) + RP[index]; } T rq = 0.0; for (uint8_t index = 0; index <= 7; index++) { rq = rq * (x * x) + RQ[index]; } return rp / rq * x * (x * x - T(1.46819706421238932572e+01)) * (x * x - T(4.92184563216946036703e+01)); } T pp = 0.0; for (uint8_t index = 0; index <= 6; index++) { pp = pp * (T(5.0) / x * (T(5.0) / x)) + PP[index]; } T pq = 0.0; for (uint8_t index = 0; index <= 6; index++) { pq = pq * (T(5.0) / x * (T(5.0) / x)) + PQ[index]; } T qp = 0.0; for (uint8_t index = 0; index <= 7; index++) { qp = qp * (T(5.0) / x * (T(5.0) / x)) + QP[index]; } T qq = 0.0; for (uint8_t index = 0; index <= 6; index++) { qq = qq * (T(5.0) / x * (T(5.0) / x)) + QQ[index]; } return (pp / pq * cos(x - T(2.356194490192344928846982537459627163)) - T(5.0) / x * (qp / qq) * sin(x - T(2.356194490192344928846982537459627163))) * T(0.797884560802865355879892119868763737) / sqrt(x); } // bessel_j1_forward(T x) ); // bessel_j1_string const auto bessel_y1_string = bessel_j1_string + jiterator_stringify( template T bessel_y1_forward(T x) { static const T PP[] = { +7.62125616208173112003e-04, +7.31397056940917570436e-02, +1.12719608129684925192e+00, +5.11207951146807644818e+00, +8.42404590141772420927e+00, +5.21451598682361504063e+00, +1.00000000000000000254e+00, }; static const T PQ[] = { +5.71323128072548699714e-04, +6.88455908754495404082e-02, +1.10514232634061696926e+00, +5.07386386128601488557e+00, +8.39985554327604159757e+00, +5.20982848682361821619e+00, +9.99999999999999997461e-01, }; static const T QP[] = { +5.10862594750176621635e-02, +4.98213872951233449420e+00, +7.58238284132545283818e+01, +3.66779609360150777800e+02, +7.10856304998926107277e+02, +5.97489612400613639965e+02, +2.11688757100572135698e+02, +2.52070205858023719784e+01, }; static const T QQ[] = { +7.42373277035675149943e+01, +1.05644886038262816351e+03, +4.98641058337653607651e+03, +9.56231892404756170795e+03, +7.99704160447350683650e+03, +2.82619278517639096600e+03, +3.36093607810698293419e+02, }; static const T YP[] = { +1.26320474790178026440e+09, -6.47355876379160291031e+11, +1.14509511541823727583e+14, -8.12770255501325109621e+15, +2.02439475713594898196e+17, -7.78877196265950026825e+17, }; static const T YQ[] = { +5.94301592346128195359e+02, +2.35564092943068577943e+05, +7.34811944459721705660e+07, +1.87601316108706159478e+10, +3.88231277496238566008e+12, +6.20557727146953693363e+14, +6.87141087355300489866e+16, +3.97270608116560655612e+18, }; if (x <= T(5.0)) { if (x == T(0.0)) { return NEG_INFINITY; } if (x <= T(0.0)) { return NAN; } T yp = 0.0; for (uint8_t index = 0; index <= 5; index++) { yp = yp * (x * x) + YP[index]; } T yq = 0.0; for (uint8_t index = 0; index <= 7; index++) { yq = yq * (x * x) + YQ[index]; } return x * (yp / yq) + (T(0.636619772367581343075535053490057448) * (bessel_j1_forward(x) * log(x) - T(1.0) / x)); } T pp = 0.0; for (uint8_t index = 0; index <= 6; index++) { pp = pp * (T(5.0) / x * (T(5.0) / x)) + PP[index]; } T pq = 0.0; for (uint8_t index = 0; index <= 6; index++) { pq = pq * (T(5.0) / x * (T(5.0) / x)) + PQ[index]; } T qp = 0.0; for (uint8_t index = 0; index <= 7; index++) { qp = qp * (T(5.0) / x * (T(5.0) / x)) + QP[index]; } T qq = 0.0; for (uint8_t index = 0; index <= 6; index++) { qq = qq * (T(5.0) / x * (T(5.0) / x)) + QQ[index]; } return (pp / pq * sin(x - T(2.356194490192344928846982537459627163)) + T(5.0) / x * (qp / qq) * cos(x - T(2.356194490192344928846982537459627163))) * T(0.797884560802865355879892119868763737) / sqrt(x); } // bessel_y1_forward(T x) ); // bessel_y1_string const auto chebyshev_polynomial_t_string = jiterator_stringify( template T chebyshev_polynomial_t_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(1.0)) { if (x > T(0.0) || n % 2 == 0) { return T(1.0); } return T(-1.0); } if ((n > 6) && (abs(x) < T(1.0))) { return cos(n * acos(x)); } if (n == 0) { return T(1.0); } if (n == 1) { return x; } T p = T(1.0); T q = x; T r; for (int64_t k = 2; k <= n; k++) { r = (x + x) * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_t_forward(T x, int64_t n) template T chebyshev_polynomial_t_forward(T x, T n) { return chebyshev_polynomial_t_forward(x, static_cast(n)); } // chebyshev_polynomial_t_forward(T x, T n) ); // chebyshev_polynomial_t_string const auto chebyshev_polynomial_u_string = jiterator_stringify( template T chebyshev_polynomial_u_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(1.0)) { if (x > T(0.0) || n % 2 == 0) { return n + 1; } return -(n + 1); } if ((n > 8) && (abs(x) < T(1.0))) { if (sin(acos(x)) != T(0.0)) { return sin((n + 1) * acos(x)) / sin(acos(x)); } return (n + 1) * cos((n + 1) * acos(x)) / x; } if (n == 0) { return T(1.0); } if (n == 1) { return x + x; } T p = T(1.0); T q = x + x; T r; for (int64_t k = 2; k <= n; k++) { r = (x + x) * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_u_forward(T x, int64_t n) template T chebyshev_polynomial_u_forward(T x, T n) { return chebyshev_polynomial_u_forward(x, static_cast(n)); } // chebyshev_polynomial_u_forward(T x, T n) ); // chebyshev_polynomial_u_string const auto chebyshev_polynomial_v_string = jiterator_stringify( template T chebyshev_polynomial_v_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(1.0)) { if (x > T(0.0)) { return T(1.0); } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if ((n > 8) && (abs(x) < T(1.0))) { if (sin(acos(x) / T(2.0)) != T(1.0)) { return cos((n + T(0.5)) * acos(x)) / cos(acos(x) / T(2.0)); } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x - T(1.0); } T p = T(1.0); T q = x + x - T(1.0); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x) * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_v_forward(T x, int64_t n) template T chebyshev_polynomial_v_forward(T x, T n) { return chebyshev_polynomial_v_forward(x, static_cast(n)); } // chebyshev_polynomial_v_forward(T x, T n) ); // chebyshev_polynomial_v_string const auto chebyshev_polynomial_w_string = jiterator_stringify( template T chebyshev_polynomial_w_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(1.0)) { if (x > T(0.0)) { return n + n + 1; } if (n % 2 == 0) { return T(1.0); } return T(-1.0); } if ((n > 8) && (abs(x) < T(1.0))) { if (cos(acos(x) / T(2.0)) != T(1.0)) { return sin((n + T(0.5)) * acos(x)) / sin(acos(x) / T(2.0)); } if (x > T(0.0)) { return n + n + 1; } if (n % 2 == 0) { return T(1.0); } return T(-1.0); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x + T(1.0); } T p = T(1.0); T q = x + x + T(1.0); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x) * q - p; p = q; q = r; } return r; } // chebyshev_polynomial_w_forward(T x, int64_t n) template T chebyshev_polynomial_w_forward(T x, T n) { return chebyshev_polynomial_w_forward(x, static_cast(n)); } // chebyshev_polynomial_w_forward(T x, T n) ); // chebyshev_polynomial_w_string const auto hermite_polynomial_h_string = jiterator_stringify( template T hermite_polynomial_h_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x; } T p = T(1.0); T q = x + x; T r; for (int64_t k = 2; k < n + n; k += 2) { r = (x + x) * q - k * p; p = q; q = r; } return r; } // hermite_polynomial_h_forward(T x, int64_t n) template T hermite_polynomial_h_forward(T x, T n) { return hermite_polynomial_h_forward(x, static_cast(n)); } // hermite_polynomial_h_forward(T x, T n) ); // hermite_polynomial_h_string const auto hermite_polynomial_he_string = jiterator_stringify( template T hermite_polynomial_he_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (n == 0) { return T(1.0); } if (n == 1) { return x; } T p = T(1.0); T q = x; T r; for (int64_t k = 1; k < n; k++) { r = x * q - k * p; p = q; q = r; } return r; } // hermite_polynomial_he_forward(T x, int64_t n) template T hermite_polynomial_he_forward(T x, T n) { return hermite_polynomial_he_forward(x, static_cast(n)); } // hermite_polynomial_he_forward(T x, T n) ); // hermite_polynomial_he_string const auto laguerre_polynomial_l_string = jiterator_stringify( template T laguerre_polynomial_l_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(0.0)) { return T(1.0); } if (n == 0) { return T(1.0); } if (n == 1) { return T(1.0) - x; } T p = T(1.0); T q = T(1.0) - x; T r; for (int64_t k = 1; k < n; k++) { r = (((k + k) + (T(1.0) - x)) * q - k * p) / (k + 1); p = q; q = r; } return r; } // laguerre_polynomial_l_forward(T x, int64_t n) template T laguerre_polynomial_l_forward(T x, T n) { return laguerre_polynomial_l_forward(x, static_cast(n)); } // laguerre_polynomial_l_forward(T x, T n) ); // laguerre_polynomial_l_string const auto legendre_polynomial_p_string = jiterator_stringify( template T legendre_polynomial_p_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (abs(x) == T(1.0)) { if (x > T(0.0) || n % 2 == 0) { return T(1.0); } return T(-1.0); } if (n == 0) { return T(1.0); } if (n == 1) { return x; } T p = T(1.0); T q = x; T r; for (int64_t k = 1; k < n; k++) { r = ((k + k + 1) * x * q - k * p) / (k + 1); p = q; q = r; } return r; } // legendre_polynomial_p_forward(T x, int64_t n) template T legendre_polynomial_p_forward(T x, T n) { return legendre_polynomial_p_forward(x, static_cast(n)); } // legendre_polynomial_p_forward(T x, T n) ); // legendre_polynomial_p_string const auto modified_bessel_i0_string = jiterator_stringify( template T modified_bessel_i0_forward(T x) { static const T A[] = { -4.41534164647933937950e-18, +3.33079451882223809783e-17, -2.43127984654795469359e-16, +1.71539128555513303061e-15, -1.16853328779934516808e-14, +7.67618549860493561688e-14, -4.85644678311192946090e-13, +2.95505266312963983461e-12, -1.72682629144155570723e-11, +9.67580903537323691224e-11, -5.18979560163526290666e-10, +2.65982372468238665035e-09, -1.30002500998624804212e-08, +6.04699502254191894932e-08, -2.67079385394061173391e-07, +1.11738753912010371815e-06, -4.41673835845875056359e-06, +1.64484480707288970893e-05, -5.75419501008210370398e-05, +1.88502885095841655729e-04, -5.76375574538582365885e-04, +1.63947561694133579842e-03, -4.32430999505057594430e-03, +1.05464603945949983183e-02, -2.37374148058994688156e-02, +4.93052842396707084878e-02, -9.49010970480476444210e-02, +1.71620901522208775349e-01, -3.04682672343198398683e-01, +6.76795274409476084995e-01, }; static const T B[] = { -7.23318048787475395456e-18, -4.83050448594418207126e-18, +4.46562142029675999901e-17, +3.46122286769746109310e-17, -2.82762398051658348494e-16, -3.42548561967721913462e-16, +1.77256013305652638360e-15, +3.81168066935262242075e-15, -9.55484669882830764870e-15, -4.15056934728722208663e-14, +1.54008621752140982691e-14, +3.85277838274214270114e-13, +7.18012445138366623367e-13, -1.79417853150680611778e-12, -1.32158118404477131188e-11, -3.14991652796324136454e-11, +1.18891471078464383424e-11, +4.94060238822496958910e-10, +3.39623202570838634515e-09, +2.26666899049817806459e-08, +2.04891858946906374183e-07, +2.89137052083475648297e-06, +6.88975834691682398426e-05, +3.36911647825569408990e-03, +8.04490411014108831608e-01, }; T p; T q = 0.0; if (abs(x) <= T(8.0)) { T a = A[0]; for (uint8_t index = 1; index < 30; index++) { p = q; q = a; a = ((abs(x) / T(2.0)) - T(2.0)) * q - p + A[index]; } return exp(abs(x)) * (T(0.5) * (a - p)); } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(32.0) / abs(x) - T(2.0)) * q - p + B[index]; } return exp(abs(x)) * (T(0.5) * (b - p)) / sqrt(abs(x)); } // modified_bessel_i0_forward(T x) ); // modified_bessel_i0_string const auto modified_bessel_i1_string = jiterator_stringify( template T modified_bessel_i1_forward(T x) { static const T A[] = { +2.77791411276104639959e-18, -2.11142121435816608115e-17, +1.55363195773620046921e-16, -1.10559694773538630805e-15, +7.60068429473540693410e-15, -5.04218550472791168711e-14, +3.22379336594557470981e-13, -1.98397439776494371520e-12, +1.17361862988909016308e-11, -6.66348972350202774223e-11, +3.62559028155211703701e-10, -1.88724975172282928790e-09, +9.38153738649577178388e-09, -4.44505912879632808065e-08, +2.00329475355213526229e-07, -8.56872026469545474066e-07, +3.47025130813767847674e-06, -1.32731636560394358279e-05, +4.78156510755005422638e-05, -1.61760815825896745588e-04, +5.12285956168575772895e-04, -1.51357245063125314899e-03, +4.15642294431288815669e-03, -1.05640848946261981558e-02, +2.47264490306265168283e-02, -5.29459812080949914269e-02, +1.02643658689847095384e-01, -1.76416518357834055153e-01, +2.52587186443633654823e-01, }; static const T B[] = { +7.51729631084210481353e-18, +4.41434832307170791151e-18, -4.65030536848935832153e-17, -3.20952592199342395980e-17, +2.96262899764595013876e-16, +3.30820231092092828324e-16, -1.88035477551078244854e-15, -3.81440307243700780478e-15, +1.04202769841288027642e-14, +4.27244001671195135429e-14, -2.10154184277266431302e-14, -4.08355111109219731823e-13, -7.19855177624590851209e-13, +2.03562854414708950722e-12, +1.41258074366137813316e-11, +3.25260358301548823856e-11, -1.89749581235054123450e-11, -5.58974346219658380687e-10, -3.83538038596423702205e-09, -2.63146884688951950684e-08, -2.51223623787020892529e-07, -3.88256480887769039346e-06, -1.10588938762623716291e-04, -9.76109749136146840777e-03, +7.78576235018280120474e-01, }; T p; T q = 0.0; if (abs(x) <= T(8.0)) { T a = A[0]; for (uint8_t index = 1; index < 29; index++) { p = q; q = a; a = ((abs(x) / T(2.0)) - T(2.0)) * q - p + A[index]; } if (x < T(0.0)) { return -(T(0.5) * (a - p) * abs(x) * exp(abs(x))); } return T(0.5) * (a - p) * abs(x) * exp(abs(x)); } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(32.0) / abs(x) - T(2.0)) * q - p + B[index]; } if (x < T(0.0)) { return -(exp(abs(x)) * (T(0.5) * (b - p)) / sqrt(abs(x))); } return exp(abs(x)) * (T(0.5) * (b - p)) / sqrt(abs(x)); } // modified_bessel_i1_forward(T x) ); // modified_bessel_i1_string const auto modified_bessel_k0_string = modified_bessel_i0_string + jiterator_stringify( template T modified_bessel_k0_forward(T x) { static const T A[] = { +1.37446543561352307156e-16, +4.25981614279661018399e-14, +1.03496952576338420167e-11, +1.90451637722020886025e-09, +2.53479107902614945675e-07, +2.28621210311945178607e-05, +1.26461541144692592338e-03, +3.59799365153615016266e-02, +3.44289899924628486886e-01, -5.35327393233902768720e-01, }; static const T B[] = { +5.30043377268626276149e-18, -1.64758043015242134646e-17, +5.21039150503902756861e-17, -1.67823109680541210385e-16, +5.51205597852431940784e-16, -1.84859337734377901440e-15, +6.34007647740507060557e-15, -2.22751332699166985548e-14, +8.03289077536357521100e-14, -2.98009692317273043925e-13, +1.14034058820847496303e-12, -4.51459788337394416547e-12, +1.85594911495471785253e-11, -7.95748924447710747776e-11, +3.57739728140030116597e-10, -1.69753450938905987466e-09, +8.57403401741422608519e-09, -4.66048989768794782956e-08, +2.76681363944501510342e-07, -1.83175552271911948767e-06, +1.39498137188764993662e-05, -1.28495495816278026384e-04, +1.56988388573005337491e-03, -3.14481013119645005427e-02, +2.44030308206595545468e+00, }; if (x == T(0.0)) { return INFINITY; } if (x < T(0.0)) { return NAN; } T p; T q = 0.0; if (x <= T(2.0)) { T a = A[0]; for (uint8_t index = 1; index < 10; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return T(0.5) * (a - p) - log(0.5 * x) * modified_bessel_i0_forward(x); } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(8.0) / x - T(2.0)) * q - p + B[index]; } return exp(-x) * (T(0.5) * (b - p)) / sqrt(x); } // modified_bessel_k0_forward(T x) ); // modified_bessel_k0_string const auto scaled_modified_bessel_k0_string = modified_bessel_i0_string + jiterator_stringify( template T scaled_modified_bessel_k0_forward(T x) { static const T A[] = { +1.37446543561352307156e-16, +4.25981614279661018399e-14, +1.03496952576338420167e-11, +1.90451637722020886025e-09, +2.53479107902614945675e-07, +2.28621210311945178607e-05, +1.26461541144692592338e-03, +3.59799365153615016266e-02, +3.44289899924628486886e-01, -5.35327393233902768720e-01, }; static const T B[] = { +5.30043377268626276149e-18, -1.64758043015242134646e-17, +5.21039150503902756861e-17, -1.67823109680541210385e-16, +5.51205597852431940784e-16, -1.84859337734377901440e-15, +6.34007647740507060557e-15, -2.22751332699166985548e-14, +8.03289077536357521100e-14, -2.98009692317273043925e-13, +1.14034058820847496303e-12, -4.51459788337394416547e-12, +1.85594911495471785253e-11, -7.95748924447710747776e-11, +3.57739728140030116597e-10, -1.69753450938905987466e-09, +8.57403401741422608519e-09, -4.66048989768794782956e-08, +2.76681363944501510342e-07, -1.83175552271911948767e-06, +1.39498137188764993662e-05, -1.28495495816278026384e-04, +1.56988388573005337491e-03, -3.14481013119645005427e-02, +2.44030308206595545468e+00, }; if (x == T(0.0)) { return INFINITY; } if (x < T(0.0)) { return NAN; } T p; T q = 0.0; if (x <= T(2.0)) { T a = A[0]; for (uint8_t index = 1; index < 10; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return (T(0.5) * (a - p) - log(T(0.5) * x) * modified_bessel_i0_forward(x)) * exp(x); } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(8.0) / x - T(2.0)) * q - p + B[index]; } return T(0.5) * (b - p) / sqrt(x); } // T scaled_modified_bessel_k0_forward(T x) ); // scaled_modified_bessel_k0_string const auto modified_bessel_k1_string = modified_bessel_i1_string + jiterator_stringify( template T modified_bessel_k1_forward(T x) { static const T A[] = { -7.02386347938628759343e-18, -2.42744985051936593393e-15, -6.66690169419932900609e-13, -1.41148839263352776110e-10, -2.21338763073472585583e-08, -2.43340614156596823496e-06, -1.73028895751305206302e-04, -6.97572385963986435018e-03, -1.22611180822657148235e-01, -3.53155960776544875667e-01, +1.52530022733894777053e+00, }; static const T B[] = { -5.75674448366501715755e-18, +1.79405087314755922667e-17, -5.68946255844285935196e-17, +1.83809354436663880070e-16, -6.05704724837331885336e-16, +2.03870316562433424052e-15, -7.01983709041831346144e-15, +2.47715442448130437068e-14, -8.97670518232499435011e-14, +3.34841966607842919884e-13, -1.28917396095102890680e-12, +5.13963967348173025100e-12, -2.12996783842756842877e-11, +9.21831518760500529508e-11, -4.19035475934189648750e-10, +2.01504975519703286596e-09, -1.03457624656780970260e-08, +5.74108412545004946722e-08, -3.50196060308781257119e-07, +2.40648494783721712015e-06, -1.93619797416608296024e-05, +1.95215518471351631108e-04, -2.85781685962277938680e-03, +1.03923736576817238437e-01, +2.72062619048444266945e+00, }; if (x == T(0.0)) { return INFINITY; } if (x < T(0.0)) { return NAN; } T p; T q = 0.0; if (x <= T(2.0)) { T a = A[0]; for (uint8_t index = 1; index < 11; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return log(T(0.5) * x) * modified_bessel_i1_forward(x) + T(0.5) * (a - p) / x; } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(8.0) / x - T(2.0)) * q - p + B[index]; } return exp(-x) * (T(0.5) * (b - p)) / sqrt(x); } // modified_bessel_k1_forward(T x) ); // modified_bessel_k1_string const auto scaled_modified_bessel_k1_string = modified_bessel_i1_string + jiterator_stringify( template T scaled_modified_bessel_k1_forward(T x) { static const T A[] = { -7.02386347938628759343e-18, -2.42744985051936593393e-15, -6.66690169419932900609e-13, -1.41148839263352776110e-10, -2.21338763073472585583e-08, -2.43340614156596823496e-06, -1.73028895751305206302e-04, -6.97572385963986435018e-03, -1.22611180822657148235e-01, -3.53155960776544875667e-01, +1.52530022733894777053e+00, }; static const T B[] = { -5.75674448366501715755e-18, +1.79405087314755922667e-17, -5.68946255844285935196e-17, +1.83809354436663880070e-16, -6.05704724837331885336e-16, +2.03870316562433424052e-15, -7.01983709041831346144e-15, +2.47715442448130437068e-14, -8.97670518232499435011e-14, +3.34841966607842919884e-13, -1.28917396095102890680e-12, +5.13963967348173025100e-12, -2.12996783842756842877e-11, +9.21831518760500529508e-11, -4.19035475934189648750e-10, +2.01504975519703286596e-09, -1.03457624656780970260e-08, +5.74108412545004946722e-08, -3.50196060308781257119e-07, +2.40648494783721712015e-06, -1.93619797416608296024e-05, +1.95215518471351631108e-04, -2.85781685962277938680e-03, +1.03923736576817238437e-01, +2.72062619048444266945e+00, }; if (x == T(0.0)) { return INFINITY; } if (x < T(0.0)) { return NAN; } T p; T q = 0.0; if (x <= T(2.0)) { T a = A[0]; for (uint8_t index = 1; index < 11; index++) { p = q; q = a; a = (x * x - T(2.0)) * q - p + A[index]; } return (log(T(0.5) * x) * modified_bessel_i1_forward(x) + T(0.5) * (a - p) / x) * exp(x); } T b = B[0]; for (uint8_t index = 1; index < 25; index++) { p = q; q = b; b = (T(8.0) / x - T(2.0)) * q - p + B[index]; } return (T(0.5) * (b - p) / sqrt(x)); } // T scaled_modified_bessel_k1_forward(T x) ); // scaled_modified_bessel_k1_string const auto shifted_chebyshev_polynomial_t_string = jiterator_stringify( template T shifted_chebyshev_polynomial_t_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (x == T(1.0)) { return T(1.0); } if (x == T(0.0)) { if (n % 2 == 0) { return T(1.0); } return T(-1.0); } if ((n > 6) && (abs(x + x - T(1.0)) < T(1.0))) { return cos(n * acos(x + x - T(1.0))); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x - T(1.0); } T p = T(1.0); T q = x + x - T(1.0); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_t_forward(T x, int64_t n) template T shifted_chebyshev_polynomial_t_forward(T x, T n) { return shifted_chebyshev_polynomial_t_forward(x, static_cast(n)); } // shifted_chebyshev_polynomial_t_forward(T x, T n) ); // shifted_chebyshev_polynomial_t_string const auto shifted_chebyshev_polynomial_u_string = jiterator_stringify( template T shifted_chebyshev_polynomial_u_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (x == T(1.0)) { return n + 1; } if (x == T(0.0)) { if (n % 2 == 0) { return n + 1; } return -(n + 1); } if ((n > 6) && (abs(x + x - T(1.0)) < T(1.0))) { if (sin(acos(x + x - T(1.0))) != T(0.0)) { return sin((n + 1) * acos(x + x - T(1.0))) / sin(acos(x + x - T(1.0))); } return (n + 1) * cos((n + 1) * acos(x + x - T(1.0))) / (x + x - T(1.0)); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x - T(1.0) + (x + x - T(1.0)); } T p = T(1.0); T q = x + x - T(1.0) + (x + x - T(1.0)); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_u_forward(T x, int64_t n) template T shifted_chebyshev_polynomial_u_forward(T x, T n) { return shifted_chebyshev_polynomial_u_forward(x, static_cast(n)); } // shifted_chebyshev_polynomial_u_forward(T x, T n) ); // shifted_chebyshev_polynomial_u_string const auto shifted_chebyshev_polynomial_v_string = jiterator_stringify( template T shifted_chebyshev_polynomial_v_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (x == T(1.0)) { return T(1.0); } if (x == T(0.0)) { if (n % 2 == 0) { return (n + n + 1); } return -(n + n + 1); } if ((n > 6) && (abs(x + x - T(1.0)) < T(1.0))) { if (sin(acos(x + x - T(1.0)) / T(2.0)) != T(1.0)) { return cos(((n) + T(0.5)) * acos(x + x - T(1.0))) / cos(acos(x + x - T(1.0)) / T(2.0)); } if (n % 2 == 0) { return n + n + 1; } return -(n + n + 1); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x - T(1.0) + (x + x - T(1.0)) - T(1.0); } T p = T(1.0); T q = x + x - T(1.0) + (x + x - T(1.0)) - T(1.0); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_v_forward(T x, int64_t n) template T shifted_chebyshev_polynomial_v_forward(T x, T n) { return shifted_chebyshev_polynomial_v_forward(x, static_cast(n)); } // shifted_chebyshev_polynomial_v_forward(T x, T n) ); // shifted_chebyshev_polynomial_v_string const auto shifted_chebyshev_polynomial_w_string = jiterator_stringify( template T shifted_chebyshev_polynomial_w_forward(T x, int64_t n) { if (n < 0) { return T(0.0); } if (x == T(1.0)) { return n + n + 1; } if (x == T(0.0)) { if (n % 2 == 0) { return T(1.0); } return T(-1.0); } if ((n > 4) && (abs(x + x - T(1.0)) < T(1.0))) { if (cos(acos(x + x - T(1.0)) / T(2.0)) != T(1.0)) { return sin((n + T(0.5)) * acos(x + x - T(1.0))) / sin(acos(x + x - T(1.0)) / T(2.0)); } if (n % 2 == 0) { return T(1.0); } return T(-1.0); } if (n == 0) { return T(1.0); } if (n == 1) { return x + x - T(1.0) + (x + x - T(1.0)) + T(1.0); } T p = T(1.0); T q = x + x - T(1.0) + (x + x - T(1.0)) + T(1.0); T r; for (int64_t k = 2; k <= n; k++) { r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p; p = q; q = r; } return r; } // shifted_chebyshev_polynomial_w_forward(T x, int64_t n) template T shifted_chebyshev_polynomial_w_forward(T x, T n) { return shifted_chebyshev_polynomial_w_forward(x, static_cast(n)); } // shifted_chebyshev_polynomial_w_forward(T x, T n) ); // shifted_chebyshev_polynomial_w_string const auto spherical_bessel_j0_string = jiterator_stringify( template T spherical_bessel_j0_forward(T x) { if (isinf(x)) { return T(0.0); } if (abs(x) < T(0.5)) { return T(1.0) + x * x * (T(-1.0) / T(6.0) + x * x * (T(1.0) / T(120.0) + x * x * (T(-1.0) / T(5040.0) + x * x * (T(1.0) / T(362880.0) + x * x * (T(-1.0) / T(39916800.0) + x * x * (T(1.0) / T(6227020800.0))))))); } return sin(x) / x; } // T spherical_bessel_j0_forward(T x) ); // spherical_bessel_j0_string #else // !AT_USE_JITERATOR() -- kernels must be precompiled template static inline C10_HOST_DEVICE scalar_t calc_gcd(scalar_t a_in, scalar_t b_in) { scalar_t a = ::abs(a_in); scalar_t b = ::abs(b_in); while (a != 0) { scalar_t c = a; a = b % a; b = c; } return b; } /* * For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h". */ template static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) { // [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma using accscalar_t = at::acc_type; static const double PI_f64 = 3.14159265358979323846; const accscalar_t PSI_10 = 2.25175258906672110764; const accscalar_t A[] = { 8.33333333333333333333E-2, -2.10927960927960927961E-2, 7.57575757575757575758E-3, -4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3, 8.33333333333333333333E-2, }; accscalar_t x = static_cast(in); if (x == 0) { // As per C++ standard for gamma related functions and SciPy, // If the argument is ±0, ±∞ is returned return std::copysign(static_cast(INFINITY), -x); } bool x_is_integer = x == ::trunc(x); accscalar_t result = 0; if (x < 0) { if (x_is_integer) { // As per C++ standard for gamma related functions and SciPy, // If the argument is a negative integer, NaN is returned return static_cast(NAN); } // Extracts the fractional part of x as r, since tan(pi * r) is more numerically // accurate than tan(pi * x). While these operations are mathematically equivalent // since both x and r are in radians and tan() has a periodicity of pi, in practice // the computation of pi * x is a source of error (when |x| > 1). double q, r; r = ::modf(static_cast(x), &q); result = static_cast(- PI_f64 / ::tan(PI_f64 * r)); x = 1 - x; } while (x < 10) { result -= 1 / x; x += 1; } if (x == 10) { return static_cast(result + PSI_10); } accscalar_t y = 0; if (x < 1.0e17) { accscalar_t z = 1 / (x * x); accscalar_t polevl_result = 0; for (int i = 0; i <= 6; i++) { polevl_result = polevl_result * z + A[i]; } y = z * polevl_result; } return static_cast(::log(x) - (static_cast(0.5) / x) - y + result); } template static inline C10_HOST_DEVICE scalar_t calc_trigamma(scalar_t in) { using accscalar_t = at::acc_type; const accscalar_t PI = 3.14159265358979323846; accscalar_t x = static_cast(in); accscalar_t sign = +1; accscalar_t result = 0; if (x < 0.5f) { sign = -1; accscalar_t sin_pi_x = ::sin(PI * x); result -= (PI * PI) / (sin_pi_x * sin_pi_x); x = 1 - x; } for (int i = 0; i < 6; ++i) { result += 1 / (x * x); x += 1; } const accscalar_t one = static_cast(1); const accscalar_t ixx = 1 / (x*x); result += (1 + 1 / (2*x) + ixx * (one/6 - ixx * (one/30 - ixx * (one/42)))) / x; return static_cast(sign * result); } /* * For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h". */ template static inline C10_HOST_DEVICE scalar_t chbevl(scalar_t _x, const scalar_t array[], size_t len) { static_assert(!std::is_same() && !std::is_same(), "don't instantiate with low precision type"); scalar_t b0, b1, b2; b0 = array[0]; b1 = 0; for (size_t i = 1; i < len; ++i) { b2 = b1; b1 = b0; b0 = _x * b1 - b2 + array[i]; } return (0.5 * (b0 - b2)); } /* * For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h". */ template C10_HOST_DEVICE inline std::tuple chebyshev_coefficients_i0e_A() { /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ static const T coefficients[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1}; return std::make_tuple(coefficients, 30); } template C10_HOST_DEVICE inline std::tuple chebyshev_coefficients_i0e_B() { /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ static const T coefficients[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1}; return std::make_tuple(coefficients, 25); } template static inline C10_HOST_DEVICE scalar_t calc_i0(scalar_t _x) { static_assert(!std::is_same() && !std::is_same(), "don't instantiate with low precision type"); // Upcast input for numerical accuracy purposes // Needed for accurate results if input is bfloat16 or float16 scalar_t x = ::abs(_x); if (x <= scalar_t{8.0}) { auto coeff_pair = chebyshev_coefficients_i0e_A(); auto A = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); scalar_t y = (x / scalar_t{2.0}) - scalar_t{2.0}; return (::exp(x) * chbevl(y, A, len)); } auto coeff_pair = chebyshev_coefficients_i0e_B(); auto B = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); return (::exp(x) * chbevl(scalar_t{32.0} / x - scalar_t{2.0}, B, len) / ::sqrt(x)); } template C10_HOST_DEVICE inline typename std::enable_if::value, std::tuple>::type chebyshev_coefficients_i1e_A() { /* Chebyshev coefficients for exp(-x) I1(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I1(x) / x } = 1/2. */ static const T coefficients[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1}; return std::make_tuple(coefficients, 29); } template C10_HOST_DEVICE inline typename std::enable_if::value, std::tuple>::type chebyshev_coefficients_i1e_A() { /* Chebyshev coefficients for exp(-x) I1(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I1(x) / x } = 1/2. */ static const T coeff[] = { 9.38153738649577178388E-9f, -4.44505912879632808065E-8f, 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, 2.52587186443633654823E-1f}; return std::make_tuple(coeff, 17); }; template C10_HOST_DEVICE inline typename std::enable_if::value, std::tuple>::type chebyshev_coefficients_i1e_B() { /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). */ static const T coefficients[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1}; return std::make_tuple(coefficients, 25); } template C10_HOST_DEVICE inline typename std::enable_if::value, std::tuple>::type chebyshev_coefficients_i1e_B() { /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). */ static const T coeff[] = { -3.83538038596423702205E-9f, -2.63146884688951950684E-8f, -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, 7.78576235018280120474E-1f}; return std::make_tuple(coeff, 7); }; template static inline C10_HOST_DEVICE scalar_t calc_i1(scalar_t _x) { const auto x = ::abs(_x); if (x <= scalar_t{8.0}) { auto coeff_pair = chebyshev_coefficients_i1e_A(); auto A = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); scalar_t y = x / scalar_t{2.0} - scalar_t{2.0}; const scalar_t out = ::exp(x) * x * chbevl(y, A, len); return (_x < scalar_t{0.0}) ? -out : out; } auto coeff_pair = chebyshev_coefficients_i1e_B(); auto B = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); const scalar_t out = (::exp(x) * chbevl(scalar_t{32.0} / x - scalar_t{2.0}, B, len)) / ::sqrt(x); return (_x < scalar_t{0.0}) ? -out : out; } template static inline C10_HOST_DEVICE scalar_t calc_i1e(scalar_t _x) { const auto x = ::abs(_x); if (x <= scalar_t{8.0}) { auto coeff_pair = chebyshev_coefficients_i1e_A(); auto A = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); const scalar_t y = x / scalar_t{2.0} - scalar_t{2.0}; const scalar_t out = chbevl(y, A, len) * x; return (_x < scalar_t{0.0}) ? -out : out; } auto coeff_pair = chebyshev_coefficients_i1e_B(); auto B = std::get<0>(coeff_pair); auto len = std::get<1>(coeff_pair); const scalar_t out = chbevl(scalar_t{32.0} / x - scalar_t{2.0}, B, len) / ::sqrt(x); return (_x < scalar_t{0.0}) ? -out : out; } #endif // AT_USE_JITERATOR() (this closes the "else" branch of a if/else preprocessor directive) } // namespace native } // namespace at