#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { namespace native { namespace detail { // Enum representing the FFT type enum class CuFFTTransformType : int8_t { C2C, // Complex-to-complex R2C, // Real-to-complex C2R, // Complex-to-real }; // This struct is used to let us easily compute hashes of the // parameters. // It will be the **key** to the plan cache. struct CuFFTParams { int64_t signal_ndim_; // between 1 and max_rank, i.e., 1 <= signal_ndim <= 3 // These include additional batch dimension as well. int64_t sizes_[max_rank + 1]; int64_t input_strides_[max_rank + 1]; int64_t output_strides_[max_rank + 1]; CuFFTTransformType fft_type_; ScalarType value_type_; CuFFTParams() = default; CuFFTParams(IntArrayRef in_strides, IntArrayRef out_strides, IntArrayRef signal_sizes, CuFFTTransformType fft_type, ScalarType value_type) { // Padding bits must be zeroed for hashing memset(this, 0, sizeof(*this)); signal_ndim_ = signal_sizes.size() - 1; fft_type_ = fft_type; value_type_ = value_type; TORCH_INTERNAL_ASSERT(in_strides.size() == signal_sizes.size()); TORCH_INTERNAL_ASSERT(out_strides.size() == signal_sizes.size()); TORCH_INTERNAL_ASSERT(1 <= signal_ndim_ && signal_ndim_ <= max_rank); std::copy(signal_sizes.cbegin(), signal_sizes.cend(), sizes_); std::copy(in_strides.cbegin(), in_strides.cend(), input_strides_); std::copy(out_strides.cbegin(), out_strides.cend(), output_strides_); } }; static_assert(std::is_trivial::value, ""); // Returns true if the transform type has complex input inline bool cufft_complex_input(CuFFTTransformType type) { switch (type) { case CuFFTTransformType::C2C: case CuFFTTransformType::C2R: return true; case CuFFTTransformType::R2C: return false; } TORCH_INTERNAL_ASSERT(false); } // Returns true if the transform type has complex output inline bool cufft_complex_output(CuFFTTransformType type) { switch (type) { case CuFFTTransformType::C2C: case CuFFTTransformType::R2C: return true; case CuFFTTransformType::C2R: return false; } TORCH_INTERNAL_ASSERT(false); } // Create transform type enum from bools representing if input and output are complex inline CuFFTTransformType GetCuFFTTransformType(bool complex_input, bool complex_output) { if (complex_input && complex_output) { return CuFFTTransformType::C2C; } else if (complex_input && !complex_output) { return CuFFTTransformType::C2R; } else if (!complex_input && complex_output) { return CuFFTTransformType::R2C; } TORCH_INTERNAL_ASSERT(false, "Real to real FFTs are not supported"); } class CuFFTHandle { ::cufftHandle handle_; public: CuFFTHandle() { CUFFT_CHECK(cufftCreate(&handle_)); } ::cufftHandle & get() { return handle_; } const ::cufftHandle & get() const { return handle_; } ~CuFFTHandle() { // Not using fftDestroy() for rocFFT to work around double freeing of handles #if !defined(USE_ROCM) cufftDestroy(handle_); #endif } }; __forceinline__ static bool is_pow_of_two(int64_t x) { return (x & (x - 1)) == 0; } #if defined(USE_ROCM) using cufft_size_type = int; #else using cufft_size_type = long long int; #endif using CuFFTDimVector = c10::SmallVector; // Struct representing a tensor in CuFFT's data layout for planning transforms // See NOTE [ cuFFT Embedded Strides ]. struct CuFFTDataLayout { CuFFTDimVector embed; cufft_size_type stride, dist; bool must_clone, simple; }; // Returns a cufft embedding for a contiguous signal of the given size. // e.g. if the input is cloned, this will be the resulting data layout // See NOTE [ cuFFT Embedded Strides ]. inline CuFFTDataLayout cufft_simple_embed(IntArrayRef sizes, bool onesided) { CuFFTDataLayout layout; layout.simple = true; layout.must_clone = false; layout.embed.assign(sizes.cbegin() + 1, sizes.cend()); if (onesided) { layout.embed.back() = sizes.back() / 2 + 1; } layout.stride = 1; layout.dist = 1; for (const auto& len : layout.embed) { layout.dist *= len; } return layout; } // Convert strides to a CuFFT embedded representation. // If strides cannot be embedded, returns a simple layout and sets must_clone flag // See NOTE [ cuFFT Embedded Strides ]. inline CuFFTDataLayout as_cufft_embed(IntArrayRef strides, IntArrayRef sizes, bool onesided) { const auto signal_ndim = strides.size() - 1; CuFFTDataLayout layout; auto last_stride = strides[signal_ndim]; layout.must_clone = (last_stride <= 0); const auto last_dim_size = onesided ? sizes[signal_ndim] / 2 + 1 : sizes[signal_ndim]; const auto signal_numel = c10::multiply_integers(sizes.slice(1, sizes.size() - 2)) * last_dim_size; // Zero stides are not allowed, even if the batch size is one. // If that happens just set a dummy case if (sizes[0] == 1) { layout.dist = signal_numel; } else if (strides[0] == 0) { layout.must_clone = true; } else { layout.dist = strides[0]; } // Calculate the embedding shape, or set must_clone if the strides cannot be embedded layout.embed.resize(signal_ndim); for (auto i = signal_ndim - 1; !layout.must_clone && i > 0; i--) { auto stride = strides[i]; if (sizes[i] == 1) { layout.embed[i] = 1; } else if (stride > 0 && stride % last_stride == 0) { layout.embed[i] = stride / last_stride; last_stride = stride; } else { layout.must_clone = true; } } if (layout.must_clone) { // If the input needs to be cloned, assume it will be contiguous layout = cufft_simple_embed(sizes, onesided); layout.must_clone = true; } else { layout.embed[0] = sizes[1]; layout.stride = strides[signal_ndim]; // Determine if layout represents a simple embedding (contiguous data) layout.simple = [&] { for (const auto i : c10::irange(1, signal_ndim - 1)) { if (layout.embed[i] != sizes[i + 1]) { return false; } } return (layout.stride == 1 && layout.dist == signal_numel && layout.embed.back() == last_dim_size); }(); } return layout; } // This class contains all the information needed to execute a cuFFT plan: // 1. the plan // 2. whether to clone input before executing the plan // 3. the workspace size needed // // This class will be the **value** in the plan cache. // It **owns** the raw plan via a unique_ptr. class CuFFTConfig { public: // Only move semantics is enought for this class. Although we already use // unique_ptr for the plan, still remove copy constructor and assignment op so // we don't accidentally copy and take perf hit. CuFFTConfig(const CuFFTConfig&) = delete; CuFFTConfig& operator=(CuFFTConfig const&) = delete; explicit CuFFTConfig(const CuFFTParams& params): CuFFTConfig( IntArrayRef(params.input_strides_, params.signal_ndim_ + 1), IntArrayRef(params.output_strides_, params.signal_ndim_ + 1), IntArrayRef(params.sizes_, params.signal_ndim_ + 1), params.fft_type_, params.value_type_) {} // For complex types, strides are in units of 2 * element_size(dtype) // sizes are for the full signal, including batch size and always two-sided CuFFTConfig(IntArrayRef in_strides, IntArrayRef out_strides, IntArrayRef sizes, CuFFTTransformType fft_type, ScalarType dtype): fft_type_(fft_type), value_type_(dtype) { // signal sizes (excluding batch dim) CuFFTDimVector signal_sizes(sizes.begin() + 1, sizes.end()); // input batch size const int64_t batch = sizes[0]; const int64_t signal_ndim = sizes.size() - 1; // Since cuFFT has limited non-unit stride support and various constraints, we // use a flag to keep track throughout this function to see if we need to // input = input.clone(); #if defined(USE_ROCM) // clone input to avoid issues with hipfft clobering the input and failing tests clone_input = true; #else clone_input = false; #endif // For half, base strides on the real part of real-to-complex and // complex-to-real transforms are not supported. Since our output is always // contiguous, only need to check real-to-complex case. if (dtype == ScalarType::Half) { // cuFFT on half requires compute capability of at least SM_53 auto dev_prop = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dev_prop->major >= 5 && !(dev_prop->major == 5 && dev_prop->minor < 3), "cuFFT doesn't support signals of half type with compute " "capability less than SM_53, but the device containing input half " "tensor only has SM_", dev_prop->major, dev_prop->minor); for (const auto i : c10::irange(signal_ndim)) { TORCH_CHECK(is_pow_of_two(sizes[i + 1]), "cuFFT only supports dimensions whose sizes are powers of two when" " computing in half precision, but got a signal size of", sizes.slice(1)); } clone_input |= in_strides.back() != 1; } CuFFTDataLayout in_layout; if (clone_input) { in_layout = cufft_simple_embed(sizes, fft_type == CuFFTTransformType::C2R); } else { in_layout = as_cufft_embed(in_strides, sizes, fft_type == CuFFTTransformType::C2R); } auto out_layout = as_cufft_embed(out_strides, sizes, fft_type == CuFFTTransformType::R2C); TORCH_INTERNAL_ASSERT(!out_layout.must_clone, "Out strides cannot be represented as CuFFT embedding"); clone_input |= in_layout.must_clone; // Check if we can take advantage of simple data layout. // // See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu. const bool simple_layout = in_layout.simple && out_layout.simple; #if defined(USE_ROCM) hipfftType exec_type = [&]{ if (dtype == kFloat) { switch (fft_type) { case CuFFTTransformType::C2C: return HIPFFT_C2C; case CuFFTTransformType::R2C: return HIPFFT_R2C; case CuFFTTransformType::C2R: return HIPFFT_C2R; } } else if (dtype == kDouble) { switch (fft_type) { case CuFFTTransformType::C2C: return HIPFFT_Z2Z; case CuFFTTransformType::R2C: return HIPFFT_D2Z; case CuFFTTransformType::C2R: return HIPFFT_Z2D; } } TORCH_CHECK(false, "hipFFT doesn't support transforms of type: ", dtype); }(); #else cudaDataType itype, otype, exec_type; const auto complex_input = cufft_complex_input(fft_type); const auto complex_output = cufft_complex_output(fft_type); if (dtype == ScalarType::Float) { itype = complex_input ? CUDA_C_32F : CUDA_R_32F; otype = complex_output ? CUDA_C_32F : CUDA_R_32F; exec_type = CUDA_C_32F; } else if (dtype == ScalarType::Double) { itype = complex_input ? CUDA_C_64F : CUDA_R_64F; otype = complex_output ? CUDA_C_64F : CUDA_R_64F; exec_type = CUDA_C_64F; } else if (dtype == ScalarType::Half) { itype = complex_input ? CUDA_C_16F : CUDA_R_16F; otype = complex_output ? CUDA_C_16F : CUDA_R_16F; exec_type = CUDA_C_16F; } else { TORCH_CHECK(false, "cuFFT doesn't support tensor of type: ", dtype); } #endif // disable auto allocation of workspace to use THC allocator CUFFT_CHECK(cufftSetAutoAllocation(plan(), /* autoAllocate */ 0)); size_t ws_size_t; // make plan if (simple_layout) { // If with unit-stride, we tell cuFFT by setting inembed == onembed == NULL. // In such case, cuFFT ignores istride, ostride, idist, and odist // by assuming istride = ostride = 1. // // See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu. #if defined(USE_ROCM) CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(), /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type, batch, &ws_size_t)); #else CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(), /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype, /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype, batch, &ws_size_t, exec_type)); #endif } else { #if defined(USE_ROCM) CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(), in_layout.embed.data(), in_layout.stride, in_layout.dist, out_layout.embed.data(), out_layout.stride, out_layout.dist, exec_type, batch, &ws_size_t)); #else CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(), in_layout.embed.data(), in_layout.stride, in_layout.dist, itype, out_layout.embed.data(), out_layout.stride, out_layout.dist, otype, batch, &ws_size_t, exec_type)); #endif } ws_size = static_cast(ws_size_t); } const cufftHandle &plan() const { return plan_ptr.get(); } CuFFTTransformType transform_type() const { return fft_type_; } ScalarType data_type() const { return value_type_; } bool should_clone_input() const { return clone_input; } int64_t workspace_size() const { return ws_size; } private: CuFFTHandle plan_ptr; bool clone_input; int64_t ws_size; CuFFTTransformType fft_type_; ScalarType value_type_; }; #if defined(USE_ROCM) // Note that the max plan number for CUDA version < 10 has to be 1023 // due to a bug that fails on the 1024th plan constexpr int64_t CUFFT_MAX_PLAN_NUM = 1023; constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM; #else constexpr int64_t CUFFT_MAX_PLAN_NUM = std::numeric_limits::max(); // The default max cache size chosen for CUDA version > 10 is arbitrary. // This number puts a limit on how big of a plan cache should we maintain by // default. Users can always configure it via cufft_set_plan_cache_max_size. constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = 4096; #endif static_assert(0 <= CUFFT_MAX_PLAN_NUM && CUFFT_MAX_PLAN_NUM <= std::numeric_limits::max(), "CUFFT_MAX_PLAN_NUM not in size_t range"); static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 && CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM, "CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range"); // This cache assumes that the mapping from key to value never changes. // This is **NOT** thread-safe. Please use a mutex when using it **AND** the // value returned from try_emplace_value. // The contract of using this cache is that try_emplace_value should only be // used when the max_size is positive. class CuFFTParamsLRUCache { public: using kv_t = typename std::pair; using map_t = typename std::unordered_map, typename std::list::iterator, ParamsHash, ParamsEqual>; using map_kkv_iter_t = typename map_t::iterator; CuFFTParamsLRUCache() : CuFFTParamsLRUCache(CUFFT_DEFAULT_CACHE_SIZE) {} CuFFTParamsLRUCache(int64_t max_size) { _set_max_size(max_size); } CuFFTParamsLRUCache(CuFFTParamsLRUCache&& other) noexcept : _usage_list(std::move(other._usage_list)), _cache_map(std::move(other._cache_map)), _max_size(other._max_size) {} CuFFTParamsLRUCache& operator=(CuFFTParamsLRUCache&& other) noexcept { _usage_list = std::move(other._usage_list); _cache_map = std::move(other._cache_map); _max_size = other._max_size; return *this; } // If key is in this cache, return the cached config. Otherwise, emplace the // config in this cache and return it. // Return const reference because CuFFTConfig shouldn't be tampered with once // created. const CuFFTConfig &lookup(CuFFTParams params) { AT_ASSERT(_max_size > 0); map_kkv_iter_t map_it = _cache_map.find(params); // Hit, put to list front if (map_it != _cache_map.end()) { _usage_list.splice(_usage_list.begin(), _usage_list, map_it->second); return map_it->second->second; } // Miss // remove if needed if (_usage_list.size() >= _max_size) { auto last = _usage_list.end(); last--; _cache_map.erase(last->first); _usage_list.pop_back(); } // construct new plan at list front, then insert into _cache_map _usage_list.emplace_front(std::piecewise_construct, std::forward_as_tuple(params), std::forward_as_tuple(params)); auto kv_it = _usage_list.begin(); _cache_map.emplace(std::piecewise_construct, std::forward_as_tuple(kv_it->first), std::forward_as_tuple(kv_it)); return kv_it->second; } void clear() { _cache_map.clear(); _usage_list.clear(); } void resize(int64_t new_size) { _set_max_size(new_size); auto cur_size = _usage_list.size(); if (cur_size > _max_size) { auto delete_it = _usage_list.end(); for (size_t i = 0; i < cur_size - _max_size; i++) { delete_it--; _cache_map.erase(delete_it->first); } _usage_list.erase(delete_it, _usage_list.end()); } } size_t size() const { return _cache_map.size(); } size_t max_size() const noexcept { return _max_size; } std::mutex mutex; private: // Only sets size and does value check. Does not resize the data structures. void _set_max_size(int64_t new_size) { // We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since // CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check // first. TORCH_CHECK(new_size >= 0, "cuFFT plan cache size must be non-negative, but got ", new_size); TORCH_CHECK(new_size <= CUFFT_MAX_PLAN_NUM, "cuFFT plan cache size can not be larger than ", CUFFT_MAX_PLAN_NUM, ", but got ", new_size); _max_size = static_cast(new_size); } std::list _usage_list; map_t _cache_map; size_t _max_size; }; // Since ATen is separated into CPU build and CUDA build, we need a way to call // these functions only when CUDA is loaded. We use CUDA hooks for this purpose // (at cuda/detail/CUDAHooks.cpp), and call the hooked functions from the actual // native function counterparts (at native/SpectralOps.cpp), i.e., // _cufft_get_plan_cache_max_size, _cufft_set_plan_cache_max_size // _cufft_get_plan_cache_size, and _cufft_clear_plan_cache. int64_t cufft_get_plan_cache_max_size_impl(int64_t device_index); void cufft_set_plan_cache_max_size_impl(int64_t device_index, int64_t max_size); int64_t cufft_get_plan_cache_size_impl(int64_t device_index); void cufft_clear_plan_cache_impl(int64_t device_index); }}} // namespace at::native::detail