#include #include namespace at { namespace native { /* * Given batches of matrices with arbitrary batch dim, * computes the number of batches for Triu and Tril. This ignores stride 0 dimension */ static inline int64_t batchCountTrilTriu(const Tensor& batched_matrices) { int64_t result = 1; for (int64_t i = 0; i < batched_matrices.ndimension() - 2; i++) { if (batched_matrices.stride(i) != 0) { result *= batched_matrices.size(i); } } return result; } /* Checks a necessary property for the triu and tril implementations, hence the name. * Here batch contiguity is checked for tensors with greater than 4 dimensions. * Contiguous tensors and tensors with less than 3 dimensions pass this check */ static inline std::tuple checkTrilTriuBatchContiguous(const Tensor& tensor, bool allow_zero_stride) { // Complete contiguity is the most desired property, which is why // we return true if the tensor is contiguous if (tensor.is_contiguous()) { auto default_strides_for_size = batched_matrix_contiguous_strides(tensor.sizes()); if (tensor.strides() == default_strides_for_size) { return std::make_tuple(true, tensor); } else { return std::make_tuple(false, tensor.as_strided(tensor.sizes(), default_strides_for_size)); } } int64_t dims = tensor.dim(); // Tensors with dimension less than 4 are handled by default if (allow_zero_stride && dims <= 3) { return std::make_tuple(true, tensor); } int64_t expected_stride = tensor.size(-1) * tensor.size(-2); for (int64_t i = dims - 3; i >= 0; i--) { // Skip trivial dimension; if (allow_zero_stride && i == 0 && (tensor.stride(i) == 0 || tensor.size(i) == 1)) { continue; } if (expected_stride != tensor.stride(i)) { return std::make_tuple(false, tensor.contiguous()); } expected_stride *= tensor.size(i); } return std::make_tuple(true, tensor); } } // namespace native } // namespace at