import logging from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Tuple import torch import torch.fx from torch.fx._compatibility import compatibility from torch.fx.node import map_arg from .shape_prop import ShapeProp from .split_utils import split_by_tags from .tools_common import ( CALLABLE_NODE_OPS, FxNetAccFusionsFinder, Names, NodeList, NodeSet, TensorOrTensors, Tensors, ) __all__ = [ "FxNetMinimizerBadModuleError", "FxNetMinimizerRunFuncError", "FxNetMinimizerResultMismatchError", ] _LOGGER = logging.getLogger(__name__) @compatibility(is_backward_compatible=False) class FxNetMinimizerBadModuleError(Exception): """ Raised if failed to split out a minimize module """ pass @compatibility(is_backward_compatible=False) class FxNetMinimizerRunFuncError(Exception): """ Raised if error occurs during run_a or run_b functions """ pass @compatibility(is_backward_compatible=False) class FxNetMinimizerResultMismatchError(Exception): """ Raised if comparing function thinks the results are mismatching. """ pass @dataclass class _MinimizerSettingBase: """ Args: `accumulate_error`: Instead of using a's input for both converted module to verify , use the previous outputs of each converted module as input to accumulate the errors. `traverse_method`: "sequential" or "binary" or "accumulate" Determine the way of traverse the nodes in FX module. `find_all`: Minimizer will go through the entire model and return all problematic nodes. `return_intermediate`: If true, when using `run_nodes()` function to run the model, intermediate results of all the ops will be returned as output. """ accumulate_error: bool = False traverse_method: str = "sequential" find_all: bool = False return_intermediate: bool = False def __str__(self): settings_str = "FX Minimizer Settings:\n" for k, v in vars(self).items(): settings_str += f"\t{k}: {v}\n" return settings_str class _MinimizerBase: """ This class is used to automatically find problematic nodes in a model. It takes a FX graphmodule and generate some submodules while traverse the graph. Then two functions `run_a` and `run_b` will be used to run the same submodule and a function `compare_fn` will be used to compare the results. Currently we provides two ways to traverse the graph and generate submodules. 1. Sequential traversal: this will traverse the graph node by node and generate one submodule with one sigle node. 2. Binary searching: this will do a binary search style traversal on the graph. For internal Users, a guide can be found here https://fb.quip.com/HDtuAgiKGfkP. """ def __init__( self, module: torch.fx.GraphModule, sample_input: Tensors, compare_fn: Callable[ [TensorOrTensors, TensorOrTensors, Names], Tuple[float, bool] ], settings: _MinimizerSettingBase, ): assert isinstance(module, torch.fx.GraphModule) self.module = module self.sample_input = sample_input self.compare_fn = compare_fn self.settings = settings # Stores outputs of run_a function self.a_outputs: Dict[str, Any] = {} # Stores outputs of run_b function self.b_outputs: Dict[str, Any] = {} # Stores the results of compare_fn self.results: Dict[Any, Any] = {} # Stores the report for the runs self.reports: List[List[str]] = [] # Current iteration self.iteration: int = 0 callable_nodes = { node for node in self.module.graph.nodes if node.op in CALLABLE_NODE_OPS } ShapeProp(self.module).propagate(*self.sample_input) self.fusions = FxNetAccFusionsFinder(self.module, callable_nodes)() # Check if number of input in sample_input matches the number of placeholders placeholders = [ node.name for node in self.module.graph.nodes if node.op == "placeholder" ] assert len(placeholders) == len(self.sample_input) # Store sample_input for i, name in enumerate(placeholders): self.a_outputs[name] = sample_input[i] self.b_outputs[name] = sample_input[i] def run_a(self, mod: torch.fx.GraphModule, inputs: Tensors) -> TensorOrTensors: """ Run `mod` with `inputs` and generate output. The output will be compared with output of run_b(). """ raise RuntimeError("run_a() is not implemented.") def run_b(self, mod: torch.fx.GraphModule, inputs: Tensors) -> TensorOrTensors: """ Run `mod` with `inputs` and generate output. The output will be compared with output of run_a(). """ raise RuntimeError("run_b() is not implemented.") def _store_outputs( self, a_result: TensorOrTensors, b_result: TensorOrTensors, submodule: torch.fx.GraphModule, ): """ Store the outputs of self.run_a() and self.run_b() into self.a_outputs and self.b_outputs, so that we can use them when execute preceding nodes that use those outputs as inputs. Args: a_result: Output of self.run_a(). Could be a tensor or tensors. b_result: Output of self.run_b(). Could be a tensor or tensors. submodule: The module that generates a_result and b_result. """ output_node = next( node for node in submodule.graph.nodes if node.op == "output" ) # Only one output if isinstance(output_node.args[0], torch.fx.Node): self.a_outputs[output_node.args[0].name] = a_result self.b_outputs[output_node.args[0].name] = b_result # Multiple outputs else: for i, arg in enumerate(output_node.args[0]): self.a_outputs[arg.name] = a_result[i] self.b_outputs[arg.name] = b_result[i] def _get_submod_inputs( self, main_module: torch.fx.GraphModule, submod_path: str ) -> Tuple[Tensors, Tensors]: """ Try get submodule inputs from stored outputs. If not found then use torch_glow.get_submod_inputs to get the inputs. If accumulate_error is False, use a_input for run_a() and run_b() otherwise use a_input for run_a and b_input for run_b. Args: main_module: Top-levlel fx module. submod_path: Path to the submodule we want to run and compare results. Returns: a_input: List of tensor(s) that will be used by run_a() as submodule inputs. b_input: List of tensor(s) that will be used by run_b() as submodule inputs. """ a_input = [] b_input = [] submodule = getattr(main_module, submod_path) placeholders = [ node.name for node in submodule.graph.nodes if node.op == "placeholder" ] # If all placeholder can be found in stored outputs, use stored # outputs as inputs. Otherwise, use `torch_glow.get_submod_inputs` # to get the inputs. if set(placeholders) <= self.a_outputs.keys(): for name in placeholders: a_input.append(self.a_outputs[name]) b_input.append(self.b_outputs[name]) else: if self.settings.accumulate_error: print(f"Can't find previous stored outputs named {placeholders}!") def get_inputs(self: torch.nn.Module, inputs: Any): nonlocal a_input a_input = inputs # Use forward hook to get the inputs to the submodule handle = submodule.register_forward_pre_hook(get_inputs) main_module(*self.sample_input) handle.remove() b_input = a_input if not self.settings.accumulate_error: return a_input, a_input return a_input, b_input def _tag_nodes(self, selected_nodes: NodeSet): """ Tag selected nodes with tag "minimize". Nodes with the same tags will be split to the same submodule afterwards. Args: selected_nodes: Nodes that we want to minimize. We will tag those nodes with "minimize", all preceding nodes with "main_0" and all following nodes with "main_1". """ for node in self.module.graph.nodes: if node.op not in CALLABLE_NODE_OPS: continue if node in selected_nodes: node.tag = "minimize" elif any( n.tag in {"minimize", "main_1"} for n in node.all_input_nodes if n.op in CALLABLE_NODE_OPS ): node.tag = "main_1" else: node.tag = "main_0" def _build_submodule(self, nodes: NodeSet) -> Tuple[torch.fx.GraphModule, str]: """ Split self.module so that one submodule consists of `nodes` and only `nodes`. Args: nodes: Nodes that we want to include in the minimize submodule. Returns: split_module (torch.fx.GraphModule): the module after split. submodule_name (str): the name of the submodule that consists of `nodes`. """ # Color provided nodes self._tag_nodes(nodes) # Split module based on coloring split_module = split_by_tags(self.module, ["main_0", "minimize", "main_1"]) # Find submodule containing colored nodes submodule_name: str = "" for child_name, _ in split_module.named_children(): # Skip submodules we're not interested in at the moment if "minimize" not in child_name: continue if submodule_name == "": submodule_name = child_name else: raise FxNetMinimizerBadModuleError( f"Expected only one minimize submodule with nodes {nodes}" ) if submodule_name == "": raise FxNetMinimizerBadModuleError( f"Minimize submodule was not found with nodes {nodes}" ) return split_module, submodule_name def _run_and_compare( self, split_module: torch.fx.GraphModule, submod_name: str, output_names: Names ): """ Run the submodule in `split_module` that has name `submod_name` using `self.run_a` and `self.run_b` and compare their results. Args: split_module: Main module that contains the minimize submodule. submod_name: Name of the minimize submodule. output_names: Names of the node we want to output. If None, we will use the original output. """ submodule = getattr(split_module, submod_name) a_input, b_input = self._get_submod_inputs(split_module, submod_name) if len(self.reports) == 0: self.reports.append([]) self.iteration = 1 report = self.reports[self.iteration - 1] report.append("Run and compare ...") if output_names: output_nodes: NodeList = [] for node in submodule.graph.nodes: if node.op == "output": submodule.graph.erase_node(node) if node.name in output_names: output_nodes.append(node) submodule.graph.output( output_nodes[0] if len(output_nodes) == 1 else tuple(output_nodes) ) submodule.graph.lint() submodule.recompile() # Use name of args in output node as key to store comparison result for node in submodule.graph.nodes: if node.op == "output": result_key = map_arg(node.args, lambda x: x.name) a_result = self.run_a(submodule, a_input) b_result = self.run_b(submodule, b_input) self._store_outputs(a_result, b_result, submodule) # Compare results names: Names = output_names if output_names is None: names = [str(v) for v in result_key] numeric_result, bool_result = self.compare_fn(a_result, b_result, names) self.results[result_key] = numeric_result report.append(f"Numerical accuracy = {numeric_result}") if not bool_result: report.append(f"Result mismatch for {result_key}") raise FxNetMinimizerResultMismatchError(f"Result mismatch for {result_key}") def _binary_search_impl( self, all_nodes: NodeList, start_idx: int, end_idx: int ) -> NodeSet: """ Recursive binary search implementation. """ nodes: NodeList = all_nodes[start_idx:end_idx] report: List[str] = [] self.reports.append(report) self.iteration += 1 report.append(f"Binary search iteration {self.iteration}.") report.append( f"From node index {start_idx} to {end_idx-1}. " f"Size of the interested node list is {len(nodes)}" ) cur_nodes: NodeSet = set(nodes) for node in nodes: if node in self.fusions: cur_nodes.update(self.fusions[node]) try: split_module, submod_name = self._build_submodule(cur_nodes) self._run_and_compare(split_module, submod_name, []) except (FxNetMinimizerRunFuncError, FxNetMinimizerResultMismatchError): if len(nodes) == 1: report.append( f"This is the last node in the sub-module. " f"Search in the current branch is successful with culprit = {cur_nodes}." ) self.print_report(report) return cur_nodes report.append( "Proceed to split and lower the halves of the current " "sub-module individually." ) self.print_report(report) mid = len(nodes) // 2 culprits = self._binary_search_impl(all_nodes, start_idx, start_idx + mid) if len(culprits) != 0 and not self.settings.find_all: return culprits culprits = self._binary_search_impl(all_nodes, start_idx + mid, end_idx) if len(culprits) == 0: report.append( f"Further split and lowering found no errors. " f"Unable to minimize the submodule with list of nodes: {nodes}" ) self.print_report(report) return culprits else: report.append("No discrepancy found.") self.print_report(report) return set() def _binary_traverse(self, nodes: NodeList) -> NodeSet: """ Binary search on `nodes` for culprit. """ return self._binary_search_impl(nodes, 0, len(nodes)) def _sequential_traverse(self, nodes: NodeList) -> NodeSet: """ Traverse `nodes` one by one and determine if any of them is a culprit. """ culprits: NodeSet = set() for node in nodes: report: List[str] = [] self.reports.append(report) self.iteration += 1 report.append(f"Sequential traverse iteration {self.iteration}.") report.append(f"Visit node: {node.name}") _LOGGER.info(f"Visit node: {node.name}") cur_nodes: NodeSet = {node} if node in self.fusions: cur_nodes = self.fusions[node] try: split_module, submod_name = self._build_submodule(cur_nodes) self._run_and_compare(split_module, submod_name, [node.name]) self.print_report(report) except (FxNetMinimizerResultMismatchError): culprits.add(node) report.append(f"Found culprit from numeric error: {node}") self.print_report(report) if not self.settings.find_all: return culprits except (FxNetMinimizerRunFuncError): culprits.update(cur_nodes) report.append(f"Found culprit from run error: {node}") self.print_report(report) if not self.settings.find_all: return culprits return culprits def _accumulate_traverse(self, nodes: NodeList) -> NodeSet: culprits: NodeSet = set() nodes_to_run: NodeSet = set() # find_all is not supported for accumulate traversal because all the # ops run on NNPI. So we return after the first op that raises error. if self.settings.find_all: print("'Find All' mode is not supported in accumulate traversal.") return culprits for node in nodes: report: List[str] = [] self.reports.append(report) self.iteration += 1 report.append(f"Accumulate traverse iteration {self.iteration}.") nodes_to_run.add(node) node_name = node.name if node_name is not None and isinstance(node_name, tuple): node_name = node_name[0] assert node_name is not None and isinstance( node_name, str ), f"minimize: node_name: {node_name}" report.append(f"Add node: {node_name}") try: split_module, submod_name = self._build_submodule(nodes_to_run) self._run_and_compare(split_module, submod_name, [node_name]) self.print_report(report) except (FxNetMinimizerResultMismatchError, FxNetMinimizerRunFuncError): culprits.add(node) report.append(f"Found culprit {node}") self.print_report(report) return culprits return culprits def _collect_nodes(self, start: Optional[str], end: Optional[str]) -> NodeList: """ Collect nodes in the model that between nodes with name of `start` and `end`. These two nodes are also included. """ nodes: NodeList = [] add_node = start is None for node in self.module.graph.nodes: if node.op not in CALLABLE_NODE_OPS: continue if node.name == start: add_node = True if add_node: nodes.append(node) if node.name == end: break return nodes def run_nodes(self, start: Optional[str] = None, end: Optional[str] = None): """ Run part of the model from `start` node to `end` node. If `start` is None then we start from the beginning of the model. If `end` is None then we stop at the end of the model. Args: start: The name of the node which is the first node of the submodule we want to run. If set to None, then we'll start with the first node of the model. end: The name of the node which is the last node of the submodule we want to run. If set to None, we'll end with the last node of the model. """ nodes = self._collect_nodes(start, end) cur_nodes = set(nodes) for node in nodes: if node in self.fusions: cur_nodes.update(self.fusions[node]) output_names = [] if self.settings.return_intermediate: output_names = [node.name for node in nodes] try: split_module, submod_name = self._build_submodule(cur_nodes) self._run_and_compare(split_module, submod_name, output_names) except ( FxNetMinimizerRunFuncError, FxNetMinimizerResultMismatchError, ) as e: print(e) def print_report(self, report: List[str]): for i in range(len(report)): if i > 0: print(" . " + report[i]) else: print(report[i]) def print_reports(self): for report in self.reports: self.print_report(report) def minimize( self, start: Optional[str] = None, end: Optional[str] = None ) -> NodeSet: """ Minimizing the model from node with name `start` to node with name `end` base on self.settings. Find culprits that causes FxNetMinimizerRunFuncError or FxNetMinimizerResultMismatchError errors. Args: start: The name of the node where we want to start minimizing. If set to None, then we'll start with the first node of the model. end: The name of the node where we want to terminate minimizing. If set to None, we'll end with the last node of the model. Returns: nodes: A list of nodes that causes FxNetMinimizerRunFuncError or FxNetMinimizerResultMismatchError errors during minimizing. """ print(self.settings) print(self.module.graph) nodes = self._collect_nodes(start, end) if self.settings.traverse_method == "sequential": return self._sequential_traverse(nodes) if self.settings.traverse_method == "binary": return self._binary_traverse(nodes) if self.settings.traverse_method == "accumulate": return self._accumulate_traverse(nodes) raise RuntimeError(f"Unknow traverse method {self.settings.traverse_method}!")