r''' FX is a toolkit for developers to use to transform ``nn.Module`` instances. FX consists of three main components: a **symbolic tracer,** an **intermediate representation**, and **Python code generation**. A demonstration of these components in action: :: import torch # Simple module for demonstration class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) module = MyModule() from torch.fx import symbolic_trace # Symbolic tracing frontend - captures the semantics of the module symbolic_traced : torch.fx.GraphModule = symbolic_trace(module) # High-level intermediate representation (IR) - Graph representation print(symbolic_traced.graph) """ graph(): %x : [#users=1] = placeholder[target=x] %param : [#users=1] = get_attr[target=param] %add : [#users=1] = call_function[target=operator.add](args = (%x, %param), kwargs = {}) %linear : [#users=1] = call_module[target=linear](args = (%add,), kwargs = {}) %clamp : [#users=1] = call_method[target=clamp](args = (%linear,), kwargs = {min: 0.0, max: 1.0}) return clamp """ # Code generation - valid Python code print(symbolic_traced.code) """ def forward(self, x): param = self.param add = x + param; x = param = None linear = self.linear(add); add = None clamp = linear.clamp(min = 0.0, max = 1.0); linear = None return clamp """ The **symbolic tracer** performs "symbolic execution" of the Python code. It feeds fake values, called Proxies, through the code. Operations on theses Proxies are recorded. More information about symbolic tracing can be found in the :func:`symbolic_trace` and :class:`Tracer` documentation. The **intermediate representation** is the container for the operations that were recorded during symbolic tracing. It consists of a list of Nodes that represent function inputs, callsites (to functions, methods, or :class:`torch.nn.Module` instances), and return values. More information about the IR can be found in the documentation for :class:`Graph`. The IR is the format on which transformations are applied. **Python code generation** is what makes FX a Python-to-Python (or Module-to-Module) transformation toolkit. For each Graph IR, we can create valid Python code matching the Graph's semantics. This functionality is wrapped up in :class:`GraphModule`, which is a :class:`torch.nn.Module` instance that holds a :class:`Graph` as well as a ``forward`` method generated from the Graph. Taken together, this pipeline of components (symbolic tracing -> intermediate representation -> transforms -> Python code generation) constitutes the Python-to-Python transformation pipeline of FX. In addition, these components can be used separately. For example, symbolic tracing can be used in isolation to capture a form of the code for analysis (and not transformation) purposes. Code generation can be used for programmatically generating models, for example from a config file. There are many uses for FX! Several example transformations can be found at the `examples `__ repository. ''' from .graph_module import GraphModule from ._symbolic_trace import symbolic_trace, Tracer, wrap, PH, ProxyableClassMeta from .graph import Graph, CodeGen from .node import Node, map_arg from .proxy import Proxy from .interpreter import Interpreter as Interpreter, Transformer as Transformer from .subgraph_rewriter import replace_pattern