""" :mod:`torch.distributed.optim` exposes DistributedOptimizer, which takes a list of remote parameters (:class:`~torch.distributed.rpc.RRef`) and runs the optimizer locally on the workers where the parameters live. The distributed optimizer can use any of the local optimizer :ref:`optimizer-algorithms` to apply the gradients on each worker. """ import torch from torch import optim from .apply_optimizer_in_backward import _apply_optimizer_in_backward from .functional_adadelta import _FunctionalAdadelta from .functional_adagrad import _FunctionalAdagrad from .functional_adam import _FunctionalAdam from .functional_adamax import _FunctionalAdamax from .functional_adamw import _FunctionalAdamW from .functional_rmsprop import _FunctionalRMSprop from .functional_rprop import _FunctionalRprop from .functional_sgd import _FunctionalSGD from .named_optimizer import _NamedOptimizer from .utils import as_functional_optim # DistributedOptimizer imports torch.distributed.rpc names, so gate availability # based on RPC being available. if hasattr(torch._C, "_rpc_init"): from .optimizer import DistributedOptimizer from .post_localSGD_optimizer import PostLocalSGDOptimizer from .zero_redundancy_optimizer import ZeroRedundancyOptimizer