# Copyright (c) Meta Platforms, Inc. and affiliates import copy import dataclasses from typing import Dict, List, Optional, Sequence, Tuple, Union, cast from torch.distributed.checkpoint.planner import LoadPlan import torch import torch.distributed as dist from torch.distributed._shard.sharded_tensor.api import ShardedTensor from torch.distributed._shard.sharded_tensor.metadata import TensorProperties from torch.distributed._shard.sharded_tensor.shard import Shard from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ( ChunkShardingSpec, ) import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.metadata import ( BytesStorageMetadata, Metadata, MetadataIndex, STATE_DICT_TYPE, TensorStorageMetadata, ) from torch.distributed.checkpoint.planner_helpers import ( _create_sharded_read_items, _create_read_items, ) from torch.distributed.remote_device import _remote_device from torch.distributed._tensor import DTensor from torch.distributed.checkpoint.default_planner import ( DefaultLoadPlanner, ) from torch.distributed._shard.api import _shard_tensor from torch.distributed.checkpoint._nested_dict import unflatten_state_dict from torch.distributed.checkpoint.utils import ( _element_wise_add, _element_wise_sub, ) STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]] # TODO: Update docstrings for optimizer.py __all__ = [ "load_sharded_optimizer_state_dict", ] def _gen_rank_device(global_rank: int) -> str: if torch.cuda.is_available(): return f"cuda:{global_rank % torch.cuda.device_count()}" return "cpu" def _create_colwise_spec( pg: Optional[dist.ProcessGroup] = None, ) -> ChunkShardingSpec: if pg is None: placements = [ f"rank:{idx}/{_gen_rank_device(idx)}" for idx in range(dist.get_world_size()) ] else: placements = [ f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx))}" for idx in range(pg.size()) ] return ChunkShardingSpec( dim=0, placements=cast(List[Union[_remote_device, str]], placements), ) def _is_nested_tensor(val: torch.Tensor) -> bool: if type(val) is ShardedTensor: if len(val.local_shards()) == 0: return False if type(val.local_shards()[0].tensor) is ShardedTensor: return True if type(val.local_shards()[0].tensor) is DTensor: raise ValueError( "Cannot handle DTensor nested insided ShardedTensor" ) elif type(val) is DTensor and ( type(val._local_tensor) is DTensor or type(val._local_tensor) is ShardedTensor ): raise ValueError("Cannot handle nested DTensor") return False def _alloc_tensor(props: TensorProperties, size: Sequence[int]) -> torch.Tensor: return torch.empty( size=size, dtype=props.dtype, layout=props.layout, requires_grad=props.requires_grad, pin_memory=props.pin_memory, device=cast(torch.device, torch.cuda.current_device()), ) def _get_state_dict_2d_layout( state_dict: STATE_DICT_TYPE, ) -> Tuple[STATE_DICT_2D_LAYOUT, Optional[dist.ProcessGroup]]: """ We have to load the right TP slice of the optimizer state. This is not easy since the per-tensor slicing can't be inferred from checkpoint metadata. We take advantage of the model state_dict producing a sliced ST to figure out what we need to load. This is pretty fragile and it might be easier for FSDP to compute this info for us. Returns a dictionary where keys are the same of the state_dict and the value is a tuple of (offset, size) for the current rank TP slice. N.B. The state_dict *MUST* come from FSDP.sharded_state_dict. """ specs: STATE_DICT_2D_LAYOUT = {} dp_pg: Optional[dist.ProcessGroup] = None for key, value in state_dict.items(): specs[key] = (None, value.size()) if _is_nested_tensor(value): assert ( len(value.local_shards()) == 1 ), "Cannot handle ST with multiple shards" assert isinstance( value, ShardedTensor ), "Can only handle nested ShardedTensor" shard = value.local_shards()[0] specs[key] = ( shard.metadata.shard_offsets, shard.metadata.shard_sizes, ) dp_pg = shard.tensor._process_group # type: ignore[attr-defined] return ( specs, dp_pg, ) class _ReaderWithOffset(DefaultLoadPlanner): translation: Dict[MetadataIndex, MetadataIndex] state_dict: STATE_DICT_TYPE metadata: Metadata def __init__(self, fqn_to_offset: Dict[str, Sequence[int]]) -> None: super().__init__() self.fqn_to_offset = fqn_to_offset self.metadata = Metadata({}) self.state_dict = {} self.translation = {} def create_local_plan(self) -> LoadPlan: requests = [] self.translation = {} for fqn, obj in self.state_dict.items(): md = self.metadata.state_dict_metadata[fqn] if not isinstance(obj, ShardedTensor): requests += _create_read_items(fqn, md, obj) continue if fqn not in self.fqn_to_offset: requests += _create_read_items(fqn, md, obj) continue offset = self.fqn_to_offset[fqn] assert len(obj.local_shards()) == 1 original_shard = obj.local_shards()[0] shard_md = copy.deepcopy(original_shard.metadata) shard_md.shard_offsets = _element_wise_add( shard_md.shard_offsets, offset ) local_shards = [Shard(original_shard.tensor, shard_md)] reqs = _create_sharded_read_items( fqn, cast(TensorStorageMetadata, md), local_shards ) # TODO: The WriteItems will have a displaced MetadataIndex, fix it. # TODO: we should change _create_sharded_read_items to have more ergonomic API for wi in reqs: assert wi.dest_index.offset is not None original_offset = _element_wise_sub( wi.dest_index.offset, offset ) original_index = dataclasses.replace( wi.dest_index, offset=torch.Size(original_offset) ) self.translation[wi.dest_index] = original_index requests += reqs return LoadPlan(requests) def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor: return super().lookup_tensor(self.translation.get(index, index)) def load_sharded_optimizer_state_dict( model_state_dict: STATE_DICT_TYPE, optimizer_key: str, storage_reader: dist_cp.StorageReader, ) -> STATE_DICT_TYPE: """ Loads a state_dict to be used in conjuntion with FSDP sharded optimizer state. This is the current recommended way to checkpoint is FSDP >>> # xdoctest: +SKIP >>> import torch.distributed.checkpoint as dist_cp >>> # Save >>> model: torch.nn.Model >>> optim_params = model.parameters() >>> optim = torch.optim.SGD(optim_params, lr=0.01) >>> >>> with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): >>> state_dict = { >>> "optimizer": FSDP.sharded_optim_state_dict(model, optim, optim_params), >>> "model": model.state_dict() >>> } >>> dist_cp.save_state_dict( >>> state_dict=optim_state, >>> storage_writer=dist_cp.FileSystemWriter("checkpoint"), >>> planner=dist_cp.DefaultSavePlanner(), >>> ) >>> >>> # Load >>> with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT): >>> model_state_dict = model_tp.state_dict() >>> checkpoint = { >>> "model": model_state_dict >>> } >>> dist_cp.load_state_dict( >>> state_dict=checkpoint, >>> storage_reader=dist_cp.FileSystemReader(checkpoint_file), >>> planner=dist_cp.DefaultLoadPlanner(), >>> ) >>> model.load_state_dict(checkpoint["model_state"]) >>> >>> optim_state = sp_cp.load_sharded_optimizer_state_dict( >>> model_state_dict, >>> optimizer_key="optimizer", >>> storage_reader=dist_cp.FileSystemReader("checkpoint"), >>> ) >>> >>> flattened_osd = FSDP.flatten_sharded_optim_state_dict( >>> optim_state["optimizer"], model, optim >>> ) >>> >>> optim.load_state_dict(flattened_osd) """ metadata = storage_reader.read_metadata() layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict) if dp_pg is None: sharding_spec = ChunkShardingSpec( dim=0, placements=[ f"rank:{i}/cuda:{i}" for i in range(dist.get_world_size()) ], ) else: sharding_spec = _create_colwise_spec(dp_pg) # Create a state_dict for optimizer state state_dict: STATE_DICT_TYPE = {} fqn_to_offset: Dict[str, Sequence[int]] = {} for key, value in metadata.state_dict_metadata.items(): key_path = metadata.planner_data[key] if key_path[0] != optimizer_key: continue if isinstance(value, BytesStorageMetadata): state_dict[key] = "" continue # value: TensorStorageMetadata if value.size.numel() == 1: state_dict[key] = _alloc_tensor(value.properties, value.size) elif dp_pg is None: state_dict[key] = _shard_tensor( _alloc_tensor(value.properties, value.size), sharding_spec ) else: spec_key = key_path[2] alloc_size = layout_specs.get(spec_key, (None, value.size))[1] st_md = sharding_spec.build_metadata( torch.Size(alloc_size), value.properties ) local_shards = [] current_rank = dist.get_rank(dp_pg) for shard_md in st_md.shards_metadata: if ( cast(_remote_device, shard_md.placement).rank() != current_rank ): continue local_shards.append( Shard( tensor=_alloc_tensor( value.properties, shard_md.shard_sizes ), metadata=shard_md, ) ) st = ShardedTensor._init_from_local_shards_and_global_metadata( local_shards, st_md, process_group=dp_pg ) if ( spec_key in layout_specs and layout_specs[spec_key][0] is not None ): fqn_to_offset[key] = cast( Sequence[int], layout_specs[spec_key][0] ) state_dict[key] = st # Whether we unflatten before or after doesn't matter dist_cp.load_state_dict( state_dict=state_dict, storage_reader=storage_reader, # FIXME the type of planner is wrong in load_state_dict planner=_ReaderWithOffset(fqn_to_offset) if dp_pg is not None else None, ) state_dict = unflatten_state_dict(state_dict, metadata.planner_data) return state_dict