import torch.nn as nn import torch.ao.nn.intrinsic as nni from typing import Union, Callable, Tuple, Dict, Optional, Type from torch.ao.quantization.utils import Pattern, get_combined_dict, MatchAllNode import itertools __all__ = [ "fuse_conv_bn", "fuse_conv_bn_relu", "fuse_linear_bn", "fuse_convtranspose_bn", "get_fuser_method", "get_fuser_method_new", ] def fuse_conv_bn(is_qat, conv, bn): r"""Given the conv and bn modules, fuses them and returns the fused module Args: is_qat: a flag for whether we are using quantization aware training fusion or post training quantization fusion conv: Module instance of type conv2d/conv3d bn: Spatial BN instance that needs to be fused with the conv Examples:: >>> m1 = nn.Conv2d(10, 20, 3) >>> b1 = nn.BatchNorm2d(20) >>> # xdoctest: +SKIP >>> m2 = fuse_conv_bn(m1, b1) """ assert(conv.training == bn.training),\ "Conv and BN both must be in the same mode (train or eval)." fused_module_class_map = { nn.Conv1d: nni.ConvBn1d, nn.Conv2d: nni.ConvBn2d, nn.Conv3d: nni.ConvBn3d, } if is_qat: assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d' assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True' assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True' fused_module_class = fused_module_class_map.get((type(conv)), None) if fused_module_class is not None: return fused_module_class(conv, bn) else: raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn))) else: return nn.utils.fuse_conv_bn_eval(conv, bn) def fuse_conv_bn_relu(is_qat, conv, bn, relu): r"""Given the conv and bn modules, fuses them and returns the fused module Args: is_qat: a flag for whether we are using quantization aware training fusion or post training quantization fusion conv: Module instance of type conv2d/conv3d bn: Spatial BN instance that needs to be fused with the conv Examples:: >>> m1 = nn.Conv2d(10, 20, 3) >>> b1 = nn.BatchNorm2d(20) >>> r1 = nn.ReLU(inplace=False) >>> # xdoctest: +SKIP >>> m2 = fuse_conv_bn_relu(m1, b1, r1) """ assert(conv.training == bn.training == relu.training),\ "Conv and BN both must be in the same mode (train or eval)." fused_module : Optional[Type[nn.Sequential]] = None if is_qat: map_to_fused_module_train = { nn.Conv1d: nni.ConvBnReLU1d, nn.Conv2d: nni.ConvBnReLU2d, nn.Conv3d: nni.ConvBnReLU3d, } assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm' assert bn.affine, 'Only support fusing BatchNorm with affine set to True' assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True' fused_module = map_to_fused_module_train.get(type(conv), None) if fused_module is not None: return fused_module(conv, bn, relu) else: raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu))) else: map_to_fused_module_eval = { nn.Conv1d: nni.ConvReLU1d, nn.Conv2d: nni.ConvReLU2d, nn.Conv3d: nni.ConvReLU3d, } fused_module = map_to_fused_module_eval.get(type(conv), None) if fused_module is not None: fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn) return fused_module(fused_conv, relu) else: raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu))) def fuse_linear_bn(is_qat, linear, bn): r"""Given the linear and bn modules, fuses them and returns the fused module Args: is_qat: a flag for whether we are using quantization aware training fusion or post training quantization fusion linear: Module instance of type Linear bn: BatchNorm1d instance that needs to be fused with the linear layer Examples:: >>> m1 = nn.Linear(20, 10) >>> b1 = nn.BatchNorm1d(10) >>> # xdoctest: +SKIP >>> m2 = fuse_linear_bn(m1, b1) """ assert(linear.training == bn.training),\ "Linear and BN both must be in the same mode (train or eval)." if is_qat: assert bn.num_features == linear.out_features,\ "Output features of Linear must match num_features of BatchNorm1d" assert bn.affine, "Only support fusing BatchNorm1d with affine set to True" assert bn.track_running_stats,\ "Only support fusing BatchNorm1d with tracking_running_stats set to True" return nni.LinearBn1d(linear, bn) else: return nn.utils.fusion.fuse_linear_bn_eval(linear, bn) def fuse_convtranspose_bn(is_qat, convt, bn): r"""Given ConvTranspose and bn modules, fuses them and returns the fused module Args: convt: Module instance of type ConvTransposeNd bn: BatchNormNd instance that needs to be fused with the linear layer. batch norm N should match the ConvTranspose N Examples:: >>> m1 = nn.ConvTranspose2d(10, 20, 3) >>> b1 = nn.BatchNorm2d(20) >>> # xdoctest: +SKIP >>> m2 = fuse_convtranspose_bn(m1, b1) """ assert(convt.training == bn.training),\ "ConvTranspose and BN both must be in the same mode (train or eval)." if is_qat: raise Exception("Fusing ConvTranspose+BatchNorm not yet supported in QAT.") else: return nn.utils.fusion.fuse_conv_bn_eval(convt, bn, transpose=True) def _sequential_wrapper2(sequential): """ Given a sequential class for two modules, return a function that takes is_qat, and then two modules as argument, that ignores the is_qat flag and always returns the sequential that combines the two input modules """ def fuser_method(is_qat, m1, m2): return sequential(m1, m2) return fuser_method _DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = { (nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn, (nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu, (nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn, (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu, (nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn, (nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu, (nn.Conv1d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU1d), (nn.Conv2d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU2d), (nn.Conv3d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU3d), (nn.Linear, nn.BatchNorm1d): fuse_linear_bn, (nn.Linear, nn.ReLU): _sequential_wrapper2(nni.LinearReLU), (nn.BatchNorm2d, nn.ReLU): _sequential_wrapper2(nni.BNReLU2d), (nn.BatchNorm3d, nn.ReLU): _sequential_wrapper2(nni.BNReLU3d), (nn.ConvTranspose1d, nn.BatchNorm1d): fuse_convtranspose_bn, (nn.ConvTranspose2d, nn.BatchNorm2d): fuse_convtranspose_bn, (nn.ConvTranspose3d, nn.BatchNorm3d): fuse_convtranspose_bn, } def get_fuser_method(op_list, additional_fuser_method_mapping=None): ''' Get fuser method for the given list of module types, return None if fuser method does not exist ''' if additional_fuser_method_mapping is None: additional_fuser_method_mapping = {} all_mappings = get_combined_dict(_DEFAULT_OP_LIST_TO_FUSER_METHOD, additional_fuser_method_mapping) fuser_method = all_mappings.get(op_list, None) assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list) return fuser_method def _reverse2(f): def reversed(is_qat, x, y): return f(is_qat, y, x) return reversed def _reverse3(f): def reversed(is_qat, x, w): y, z = w return f(is_qat, z, y, x) return reversed def _get_valid_patterns(op_pattern): """ Returns a list of valid patterns generated from the op_pattern, since MatchAllNode can match all types of nodes, e.g. pattern (torch.nn.Conv2d, torch.add) should also be able to match keys like (MatchAllNode, torch.add) and (torch.nn.Conv2d, MatchAllNode) Example Input: (torch.add, (torch.nn.ReLU, torch.nn.Conv2d)) Example Output: [(torch.add, (torch.nn.ReLU, torch.nn.Conv2d)), (torch.add, (torch.nn.ReLU, MatchAllNode)), (torch.add, (MatchAllNode, torch.nn.Conv2d)), (torch.add, (MatchAllNode, MatchAllNode)), (MatchAllNode, (torch.nn.ReLU, torch.nn.Conv2d)), (MatchAllNode, (torch.nn.ReLU, MatchAllNode)), (MatchAllNode, (MatchAllNode, torch.nn.Conv2d)), (MatchAllNode, (MatchAllNode, MatchAllNode)), ] """ result = [] if isinstance(op_pattern, (tuple, list)): sub_combs = [] for sub_pattern in op_pattern: sub_combs.append(_get_valid_patterns(sub_pattern)) result = list(itertools.product(*sub_combs)) else: result = [op_pattern, MatchAllNode] return result def get_fuser_method_new( op_pattern: Pattern, fuser_method_mapping: Dict[Pattern, Union[nn.Sequential, Callable]]): """ This will be made defult after we deprecate the get_fuser_method Would like to implement this first and have a separate PR for deprecation """ op_patterns = _get_valid_patterns(op_pattern) fuser_method = None for op_pattern in op_patterns: fuser_method = fuser_method_mapping.get(op_pattern, None) if fuser_method is not None: break assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern) return fuser_method