import warnings from typing import Callable, Union import torch import torch.utils._pytree as pytree from torch._ops import OpOverload from torch._subclasses.fake_tensor import ( FakeTensorMode, tree_flatten_only, UnsupportedFakeTensorException, ) from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_flatten aten = torch._ops.ops.aten def outputs_alias_inputs(outputs, inputs): input_storages = { inp._typed_storage()._cdata for inp in tree_flatten_only(torch.Tensor, inputs) if torch._C._has_storage(inp) } return any( torch._C._has_storage(out) and out._typed_storage()._cdata in input_storages for out in tree_flatten_only(torch.Tensor, outputs) ) def outputs_are_inputs(outputs, inputs): input_ids = {id(inp) for inp in tree_flatten_only(torch.Tensor, inputs)} return any(id(out) in input_ids for out in tree_flatten_only(torch.Tensor, outputs)) def output_alias_each_other(outputs): storages = set() for out in tree_flatten_only(torch.Tensor, outputs): if not torch._C._has_storage(out): continue stor = out._typed_storage()._cdata if stor in storages: return True storages.add(stor) return False class CrossRefFakeMode(TorchDispatchMode): def __init__( self, ignore_op_fn: Union[Callable[[OpOverload], bool], None] = None, *, check_strides=True, check_aliasing=True, ): self.ignore_op_fn = ( ignore_op_fn if ignore_op_fn is not None else lambda fn: False ) self.check_strides = check_strides self.check_aliasing = check_aliasing def __torch_dispatch__(self, func, types, args=(), kwargs=None): kwargs = kwargs or {} fake_r = None # empty_like excluded for now due to sparse complex # aten._to_dense.default this one is getting called with csc if ( func not in ( aten.lift_fresh.default, aten.lift_fresh_copy.default, aten.set_.source_Storage_storage_offset, ) and not self.ignore_op_fn(func) and torch.Tag.dynamic_output_shape not in func.tags # type: ignore[attr-defined] and torch.Tag.inplace_view not in func.tags # type: ignore[attr-defined] and torch.Tag.data_dependent_output not in func.tags # type: ignore[attr-defined] ): try: with FakeTensorMode() as fake_mode: fake_args, fake_kwargs = pytree.tree_map_only( torch.Tensor, fake_mode.from_tensor, (args, kwargs) ) with warnings.catch_warnings(): fake_r = func(*fake_args, **fake_kwargs) except UnsupportedFakeTensorException: pass r = func(*args, **kwargs) if fake_r is not None: r_flat, _ = tree_flatten(r) f_flat, _ = tree_flatten(fake_r) assert len(r_flat) == len( r_flat ), f"Mismatch {len(r_flat)} != {len(r_flat)} on {func}" if self.check_aliasing: r_aliasing = outputs_alias_inputs(r, (args, kwargs)) f_aliasing = outputs_alias_inputs(fake_r, (fake_args, fake_kwargs)) assert ( r_aliasing == f_aliasing ), f"Mismatch on {func}: {r_aliasing} != {f_aliasing}" r_identity_eq = outputs_are_inputs(r, (args, kwargs)) f_identity_eq = outputs_are_inputs(fake_r, (fake_args, fake_kwargs)) assert ( r_identity_eq == f_identity_eq ), f"Mismatch on {func}: {r_identity_eq} != {f_identity_eq}" r_output_alias_each_other = output_alias_each_other(r) f_output_alias_each_other = output_alias_each_other(fake_r) assert ( r_output_alias_each_other == f_output_alias_each_other ), f"Mismatch on {func}: {r_output_alias_each_other} != {f_output_alias_each_other}" for r_out, fake_out in zip(tree_flatten(r)[0], tree_flatten(fake_r)[0]): r_is_ten = isinstance(r_out, torch.Tensor) assert r_is_ten == isinstance( fake_out, torch.Tensor ), f"Mismatched number of tensor outputs on {func}" if r_is_ten: assert ( r_out.requires_grad == fake_out.requires_grad ), f"Mismatch on {func}" if torch._C._has_storage(r_out): r_offset = r_out.storage_offset() f_offset = fake_out.storage_offset() assert ( r_offset == f_offset ), f"Mismatch on {func}: {r_offset} != {f_offset}" try: torch._prims.utils.compare_tensor_meta( r_out, fake_out, check_strides=self.check_strides ) except Exception as e: raise RuntimeError(f"Mismatch on {func}: {e}") from e return r