import functools import inspect import itertools import types from contextlib import contextmanager from typing import Dict, List import torch.nn from .. import skipfiles, variables from ..allowed_functions import is_allowed from ..exc import RestartAnalysis, unimplemented from ..guards import GuardBuilder from ..mutation_guard import GenerationTracker from ..source import AttrSource, GetItemSource, NNModuleSource, NotNNModuleSource from ..utils import ( is_lazy_module, is_safe_constant, istensor, istype, proxy_args_kwargs, ) from .base import MutableLocal, typestr, VariableTracker from .functions import invoke_and_store_as_constant from .lists import SliceVariable from .user_defined import UserDefinedObjectVariable class NNModuleVariable(VariableTracker): _nonvar_fields = ["module_type", "module_key"] def __init__(self, module_type: type, module_key: str, **kwargs): super().__init__(**kwargs) self.module_type = module_type self.module_key = module_key assert self.source def python_type(self): return self.module_type def _wrap_submodule(self, tx, source, submod, *key_extra, **options): return def unpack_var_sequence(self, tx): # implement list/iter/tuple/etc calls base = tx.output.get_submodule(self.module_key) options = VariableTracker.propagate([self]) assert isinstance( base, (torch.nn.ModuleList, torch.nn.ParameterList, torch.nn.Sequential) ), typestr(base) assert self.source result = [] for idx, submod in enumerate(base): result.append( tx.output.register_attr_or_module( submod, self.module_key, idx, source=NNModuleSource(GetItemSource(self.source, idx)), **options, ) ) return result def call_hasattr(self, tx, name: str) -> "VariableTracker": options = VariableTracker.propagate(self) mod = tx.output.get_submodule(self.module_key) result = hasattr(mod, name) return variables.ConstantVariable(result, **options).add_guard( NNModuleSource(AttrSource(self.source, name)).make_guard( GuardBuilder.HASATTR ) ) def is_training(self, tx): mod = tx.output.get_submodule(self.module_key) return getattr(mod, "training", False) def convert_to_unspecialized(self, tx): """Restart analysis treating this module as an UnspecializedNNModuleVariable""" mod = tx.output.get_submodule(self.module_key) GenerationTracker.tag(mod) # Mark the class dynamic unless its module initialization if tx.f_code.co_name != "__init__": GenerationTracker.mark_class_dynamic(type(mod)) raise RestartAnalysis() def var_getattr(self, tx, name): from .builder import VariableBuilder options = VariableTracker.propagate(self) guards = options.get("guards", set()) if self.source: source = AttrSource(self.source, name) options["source"] = source else: source = None base = tx.output.get_submodule(self.module_key) base_dict = object.__getattribute__(base, "__dict__") object_member = True all_class_attribute_names = set() for x in inspect.getmro(base.__class__): all_class_attribute_names.update(x.__dict__.keys()) if not self.source: unimplemented("GETATTR with no source") if name in base_dict: subobj = base_dict[name] elif ( "_modules" in base_dict and name in base_dict["_modules"] and name not in all_class_attribute_names ): subobj = base_dict["_modules"][name] elif "_parameters" in base_dict and name in base_dict["_parameters"]: subobj = base_dict["_parameters"][name] elif "_buffers" in base_dict and name in base_dict["_buffers"]: subobj = base_dict["_buffers"][name] else: subobj = inspect.getattr_static(base, name) object_member = False if name == "__class__" and not object_member: return variables.UserDefinedClassVariable(base.__class__, **options) if object_member: return VariableBuilder(tx, NNModuleSource(source))(subobj) else: if istype(subobj, property): return variables.UserFunctionVariable( subobj.fget, guards=guards, source=source, ).call_function(tx, [(self)], {}) elif istype(subobj, classmethod): return variables.UserMethodVariable( subobj.__func__, variables.UserDefinedObjectVariable(type(base), guards=guards), **options, ) elif istype(subobj, staticmethod): return variables.UserFunctionVariable(subobj.__get__(base), **options) elif istype(subobj, types.FunctionType): return variables.UserMethodVariable(subobj, self, **options) elif is_safe_constant(subobj) or istensor(subobj): # Support possibly common cases of class members return VariableBuilder(tx, NNModuleSource(source))(subobj) else: unimplemented(f"class property {typestr(base)} {typestr(subobj)}") return variables.GetAttrVariable(self, name, **options) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) mod = tx.output.get_submodule(self.module_key) @contextmanager def record_nn_module_stack(): try: tx.nn_module_stack[self.module_key] = type(mod) yield finally: del tx.nn_module_stack[self.module_key] with record_nn_module_stack(): is_lazy = is_lazy_module(mod) if ( isinstance(mod, torch.nn.Sequential) and mod.__class__.forward is torch.nn.Sequential.forward ): # unroll Sequential() assert not kwargs (arg,) = args for idx, submod in enumerate(mod): tx.call_function( tx.output.register_attr_or_module( submod, self.module_key, idx, source=NNModuleSource(GetItemSource(self.source, idx)), **options, ), [arg], {}, ) arg = tx.pop() return arg elif is_allowed(mod.__class__): # The module type will change after it is called if is_lazy: self.module_type = mod.cls_to_become from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_module", self.module_key, *proxy_args_kwargs(args, kwargs), ), **options, ) else: # for lazy modules, run the pre-hooks which will update the type # TODO mlazos: we don't fully support all of the hooks that exist, # so restrict using __call__ only to lazy modules for now assert self.source, ( "Must provide a valid source in order to inline, " "since inlined function may have default args which must be guarded." ) if is_lazy: if istype(mod.__call__, types.FunctionType): fn = mod.__call__ fn_source = AttrSource(self.source, "__call__") else: assert istype(mod.__call__, types.MethodType) fn = mod.__call__.__func__ fn_source = AttrSource( AttrSource(self.source, "__call__"), "__func__" ) args = [self] + args else: if istype(mod.forward, types.FunctionType): fn = mod.forward fn_source = AttrSource(self.source, "forward") else: assert istype(mod.forward, types.MethodType) fn = mod.forward.__func__ fn_source = AttrSource( AttrSource(self.source, "forward"), "__func__" ) args = [self] + args options["source"] = fn_source return tx.inline_user_function_return( variables.UserFunctionVariable(fn, **options), args, kwargs, ) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", constant=False, ) -> "VariableTracker": from . import ConstantVariable, ListIteratorVariable, TupleVariable options = VariableTracker.propagate(self, args, kwargs.values()) key = self.module_key module = tx.output.get_submodule(key) if name == "forward": return self.call_function(tx, args, kwargs) if name == "_check_input_dim" and skipfiles.is_torch_inline_allowed( inspect.getfile(module.__class__._check_input_dim) ): return ConstantVariable(True, **options) if name == "_get_item_by_idx": assert args[1].is_python_constant() assert isinstance(args[0], TupleVariable) mod_var = args[0].items[args[1].value] key = mod_var.module_key submod = tx.output.get_submodule(key) return tx.output.register_attr_or_module( submod, key, key, source=NNModuleSource(GetItemSource(self.source, key)), **options, ) if constant: fn = getattr(module, name) name = f"{module.__class__.__name__}_{name}_result" return invoke_and_store_as_constant(tx, fn, name, options, args, kwargs) def assert_all_args_kwargs_const(): if not all( x.is_python_constant() for x in itertools.chain(args, kwargs.values()) ): raise unimplemented(f"non-const NNModule method {name}") def get_kwargs(*names): assert_all_args_kwargs_const() fn = getattr(module, name) bound_args = inspect.signature(fn).bind( *([x.as_python_constant() for x in args]), **{k: v.as_python_constant() for k, v in kwargs.items()}, ) bound_args.apply_defaults() bound_args = bound_args.arguments return {k: bound_args[k] for k in names} def wrap_values(items): result = [] for name, submod in items: result.append( tx.output.register_attr_or_module( submod, key, name, source=NNModuleSource(gen_source(self.source, name)), **options, ) ) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) def named_embed(name, obj): return TupleVariable( [ ConstantVariable(name, **options), tx.output.register_attr_or_module( obj, key, name, source=NNModuleSource(gen_source(self.source, name)), **options, ), ] ) def gen_source(source, name): name_split = name.split(".") if name_split[0] == "": return source while len(name_split) > 0: x = name_split.pop(0) source = AttrSource(source, x) return source if name == "children": assert not (args or kwargs) return wrap_values(module.named_children()) elif name == "named_parameters": result = [] for name, param in module.named_parameters( **get_kwargs("prefix", "recurse") ): result.append(named_embed(name, param)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "named_buffers": result = [] for name, buffer in module.named_buffers( **get_kwargs("prefix", "recurse", "remove_duplicate") ): result.append(named_embed(name, buffer)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "named_modules": result = [] for name, submod in module.named_modules( **get_kwargs("memo", "prefix", "remove_duplicate") ): result.append(named_embed(name, submod)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "modules": return wrap_values(module.named_modules()) elif name == "parameters": return wrap_values(module.named_parameters(**get_kwargs("recurse"))) elif name == "keys": assert not (args or kwargs) result = [] for name in module.keys(): result.append(ConstantVariable(name, **options)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "values": assert not (args or kwargs) return wrap_values(module.items()) elif name == "items": assert not (args or kwargs) result = [] for name, submod in module.items(): result.append(named_embed(name, submod)) return ListIteratorVariable(result, mutable_local=MutableLocal(), **options) elif name == "__len__": assert not (args or kwargs) return ConstantVariable(len(module), **options) elif ( name == "__contains__" and isinstance(module, (torch.nn.ModuleDict, torch.nn.ParameterDict)) and args and args[0].is_python_constant() ): return ConstantVariable( args[0].as_python_constant() in module._modules, **options ) elif name == "__getitem__": assert not kwargs and len(args) == 1 assert type(module).__getitem__ in ( torch.nn.ModuleDict.__getitem__, torch.nn.ModuleList.__getitem__, torch.nn.ParameterList.__getitem__, torch.nn.Sequential.__getitem__, ), typestr(module) assert self.source if isinstance(args[0], SliceVariable): # Build a TupleVariable of NNModules result = [] submods = [] # Turn the slice into the list of integers keys = list(range(len(module)))[args[0].as_python_constant()] for idx, submod in enumerate(module[args[0].as_python_constant()]): key = keys[idx] src = NNModuleSource(GetItemSource(self.source, key)) result.append( tx.output.register_attr_or_module( submod, key, source=src, **options, ) ) submods.append(submod) new_module = torch.nn.Sequential(*submods) new_module_variable = tx.output.register_attr_or_module( new_module, f"{self}.__getitem__(slice)", source=NNModuleSource( GetItemSource(self.source, args[0].as_python_constant()) ), **options, ) return new_module_variable key = args[0].as_python_constant() submod = module[key] return tx.output.register_attr_or_module( submod, key, args[0].as_python_constant(), source=NNModuleSource(GetItemSource(self.source, key)), **options, ) elif name == "_get_abs_string_index": # Inline the function fn = getattr(module, name).__func__ src = AttrSource(AttrSource(self.source, name), "__func__") return tx.inline_user_function_return( variables.UserFunctionVariable(fn, source=src, **options), [self] + args, kwargs, ) # A loose heuristic, but seems to be generally good before we drop into the # manual handling of inputs elif ( name in module.__class__.__dict__ and callable(module.__class__.__dict__[name]) and all( isinstance(x, variables.TensorVariable) for x in itertools.chain(args, kwargs.values()) ) ): # TODO(voz): Refactor this into a generic as_proxy() for nn module # We use variations of this pattern in a few places now. def make_attr(name): node = tx.output.create_proxy( "get_attr", name, tuple(), {}, ) return node # Bind in self tx.output.register_attr_or_module( module, self.module_key, self.module_key, source=NNModuleSource(GetItemSource(self.source, self.module_key)), **options, ) proxy_for_mod = make_attr(self.module_key) proxy_for_mod.node.meta["example_value"] = module proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs) from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_method", name, args=(proxy_for_mod, *proxy_args), kwargs=proxy_kwargs, ), **options, ) else: return super().call_method(tx, name, args, kwargs) class UnspecializedNNModuleVariable(UserDefinedObjectVariable): """ The above class will specialize on the id() of a module and place parameters on the torch.fx.GraphModule. Giving one graph per module instance. This version treats nn.Modules() like other user defined objects and will pass parameters into the FX graph as inputs. Giving one graph per module class. """ def __init__(self, value, **kwargs): super().__init__(value=value, **kwargs) if self.source and self.source.is_nn_module(): # force guard checks even when `not config.guard_nn_modules`` self.source = NotNNModuleSource(self.source) @staticmethod @functools.lru_cache(None) def _nn_module_method_ids(): return { id(x.__code__) for x in torch.nn.Module.__dict__.values() if hasattr(x, "__code__") } def unpack_var_sequence(self, tx): from .builder import VariableBuilder try: fn = inspect.getattr_static(self.value_type, "__iter__") except AttributeError as e: raise NotImplementedError from e if fn in ( torch.nn.ModuleList.__iter__, torch.nn.ParameterList.__iter__, torch.nn.Sequential.__iter__, ): assert self.source return [ VariableBuilder(tx, source=GetItemSource(self.source, idx))( item ).add_options(self) for idx, item in enumerate(self.value) ] return super().unpack_var_sequence(tx) def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) # TODO mlazos: only support __call__ for lazy modules # until we can support a larger swath of python if is_lazy_module(self.value): fn = self.value_type.__call__ source = AttrSource(AttrSource(self.source, "__class__"), "__call__") else: fn = self.value_type.forward source = AttrSource(AttrSource(self.source, "__class__"), "forward") return variables.UserFunctionVariable( fn, source=source, **options ).call_function(tx, [self] + list(args), kwargs) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": from .builder import VariableBuilder options = VariableTracker.propagate(self, args, kwargs.values()) if name not in getattr(self.value, "__dict__", {}): try: method = inspect.getattr_static(type(self.value), name) except AttributeError: method = None if method is torch.nn.Module.parameters: assert not args or kwargs options["guards"].add( self.source.make_guard(GuardBuilder.NN_MODULE_PARAM_NAMES) ) items = [] for name, value in self.value.named_parameters(): items.append( VariableBuilder(tx, AttrSource(self.source, name))( value ).add_options(options) ) return variables.ListIteratorVariable( items, mutable_local=MutableLocal(), **options ) elif isinstance(method, staticmethod): source = AttrSource( AttrSource(AttrSource(self.source, "__class__"), name), "__func__" ) return tx.inline_user_function_return( variables.UserFunctionVariable( method.__func__, source=source, **options ), args, kwargs, ) if id(method.__code__) in self._nn_module_method_ids(): unimplemented(f"UnspecializedNNModuleVariable missing {name}") return super().call_method(tx, name, args, kwargs)